
z/OS
Version 2 Release 4

DFSMStvs Administration Guide

IBM

GC52-1388-40

Note

Before using this information and the product it supports, read the information in “Notices” on page
335.

This edition applies to Version 2 Release 4 of z/OS (5650-ZOS) and to all subsequent releases and modifications until
otherwise indicated in new editions.

Last updated: 2020-04-27
© Copyright International Business Machines Corporation 2003, 2020.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with
IBM Corp.

Contents

Figures.. vii

Tables.. ix

About this document...xiii
Required product knowledge.. xiii
z/OS information..xiii
Notational Conventions... xiii

How to send your comments to IBM..xv
If you have a technical problem...xv

Summary of changes.. xvii
Summary of Changes for z/OS V2R4..xvii
Summary of changes for z/OS Version 2 Release 3 (V2R3) and its updates.. xvii
z/OS Version 2 Release 1 summary of changes...xvii

Chapter 1. Evaluating, planning, and installing DFSMStvs.......................................1
Evaluating and planning for DFSMStvs..1

Software dependencies..1
Processing restrictions... 3

Migrating to z/OS Version 1 Release 4.. 4
SYS1.PARMLIB changes for DFSMStvs..5
JCL changes for DFSMStvs...6
System command changes for DFSMStvs... 6
Access method services...7
Changes to the executable macros..10
Messages and codes.. 11
Migration tasks... 11
Additional information... 12

Installing DFSMStvs...13
Enabling DFSMStvs on your z/OS system..13
Coding IGDSMSxx...13

Chapter 2. Administering resources for DFSMStvs.. 15
Controlling access to VSAM data sets...15

Accessing data sets in DFSMStvs mode.. 15
Specifying read integrity.. 23
Specifying a timeout value for lock requests.. 24

Defining data sets for DFSMStvs access... 24
Allocating data sets..24
Listing and controlling SMSVSAM recovery... 46
Altering data set attributes.. 54
Defining alternate indexes... 74
Defining attributes for clusters and cluster components... 89

Securing log streams... 116

Chapter 3. Customizing the DFSMStvs environment..117
Coding VSAM macros...117

 iii

Subparameters with GENCB, MODCB, SHOWCB, and TESTCB.. 117
Use of list, execute, and generate forms of VSAM macros... 118
Examples of generate, list, and execute forms... 120
ACB—generate an access method control block at assembly time... 121
EXLST—generate an exit list at assembly time... 129
GENCB—generate an access method control block at execution time.. 131
GENCB—generate an exit list at execution time... 138
IDALKADD—RLS record locking...147
RPL—generate a request parameter list at assembly time...152
SCHBFR—search buffer..160
SHOWCAT—display the catalog...161

Understanding VSAM macro return and reason codes...167
OPEN return and reason codes..167
CLOSE return and reason codes.. 173
Control block manipulation macro return and reason codes... 174
Record management return and reason codes...175
Return codes from macros used to share resources among data sets.. 194
End-of-volume return codes..195
SHOWCAT return codes... 196

Coding VSAM user-written exit routines...196
General guidelines for coding exit routines...197
Programming guidelines.. 198
IGW8PNRU routine for batch override.. 199
EODAD exit routine to process end of data...200
EXCEPTIONEXIT exit routine...201
JRNAD exit routine to journalize transactions.. 202
LERAD exit routine to analyze logical errors... 209
RLSWAIT exit routine... 210
SYNAD exit routine to analyze physical errors..211
UPAD exit routine for user processing...213
User-security-verification routine... 215

Chapter 4. Programming applications to use DVSMStvs...................................... 217
Modifying applications to use DFSMStvs.. 217
Designing and coding applications to use DFSMStvs... 217
Handling DFSMStvs error codes..217

Module identifiers.. 217
Initialization reason codes...220
Open and close reason codes..226
Command processor reason codes... 229
Front end (VSAM record management) reason codes.. 233
Message processing reason codes.. 236
Quiesce reason codes.. 237
Shunt processing reason codes...239
Restart reason codes... 243
Peer recovery reason codes...244
Syncpoint reason codes...246
Miscellaneous reason codes..252
Logging reason code prefixes.. 254
Logging services reason codes.. 256

Chapter 5. Operating in the DFSMStvs transaction processing environment.........263
Setting up the storage management subsystem..263

Preparing for the storage management subsystem..263
Activating storage management subsystem configurations...268
Displaying storage management subsystem information.. 271
Changing storage management subsystem parameters.. 271

iv

Controlling DVSMStvs processing... 271
Monitoring application programs that use DFSMStvs...271
Changing DFSMStvs status.. 271
Maintaining data integrity during backup-while-open processing... 272

Chapter 6. Diagnosing DFSMStvs problems.. 277
Incorrect output keyword... 277

Procedure... 277
VSAM RLS—incorrect output keyword...278
DFSMStvs—incorrect output keyword... 279
Catalog management—incorrect output keyword.. 280

Abend keyword..280
Symptoms of the failure...280
Procedure... 281
Procedure for building the abend keyword... 283

Message keyword.. 283
Procedure... 284
VSAM, DFSMStvs, and VSAM RLS record management—message keyword................................... 285

VSAM diagnostic aids.. 285
Access method services (AMS) diagnostic aids.. 286
Catalog management diagnostic aids... 289
VSAM OPEN/CLOSE/end-of-volume (O/C/EOV) diagnostic aids.. 291
VSAM OPEN/CLOSE/End-of-Volume return and reason codes.. 294
VSAM record-level sharing diagnostic aids... 294
VSAM record-level sharing return and reason codes..300
VSAM record management (R/M) diagnostic aids...303
VSAM record management return and reason codes... 314

Appendix A. Accessibility...331
Accessibility features.. 331
Consult assistive technologies..331
Keyboard navigation of the user interface..331
Dotted decimal syntax diagrams...331

Notices..335
Terms and conditions for product documentation...336
IBM Online Privacy Statement.. 337
Policy for unsupported hardware..337
Minimum supported hardware..338
Trademarks..338

Glossary.. 339

Index.. 355

 v

vi

Figures

1. VSAM RLS address and data spaces and requestor address spaces.. 16

2. CICS VSAM non-RLS access..17

3. CICS VSAM RLS .. 18

4. ALTER attributes that can be altered and types of catalog entries... 57

5. Interrelationships among catalog entries.. 161

6. Physical error message format...192

7. Example of a SYNAD exit routine..213

8. Relationships among SCDSs and ACDSs in an installation..264

9. Block diagram for backup-while-open serialization.. 273

10. Example of TEST option output..289

11. VSAM record management—how to find a damaged data set.. 306

 vii

viii

Tables

1. New and changed parameters for IGDSMSxx for z/OS V1R4 and later...5

2. Changed JCL statements for z/OS V1R4 and later... 6

3. New parameters for the DISPLAY SMS system command for z/OS V1R4 and later 6

4. New and changed parameters for the SET SMS system command for z/OS V1R4 and later 6

5. New and changed parameters for the SETSMS system command for z/OS V1R4 and later 7

6. New and changed parameters for the VARY SMS system command for z/OS V1R4 and later7

7. Updates to the ALLOCATE command for z/OS V1R4 and later ... 8

8. Updates to the ALTER command for z/OS V1R4 and later ..8

9. Updates to the DEFINE ALTERNATEINDEX command for z/OS V1R4 and later ..8

10. Updates to the DEFINE CLUSTER command for z/OS V1R4 and later ... 9

11. Updates to the DEFINE PATH command for z/OS V1R4 and later ... 9

12. Updates to the SHCDS command for z/OS V1R4 and later .. 10

13. Updates to the ACB macro for z/OS V1R4 and later ... 10

14. Updates to the GENCB macro for z/OS V1R4 and later .. 11

15. ALLOCATE command parameters.. 26

16. Data class attributes for each data set organization... 32

17. How NEWNAME resolves when change of catalog is required..64

18. Reentrant programming... 120

19. MACRF options..124

20. OPTCD options.. 155

21. Operand expressions for the SHOWCAT macro...166

22. Return codes in register 15 after OPEN... 167

23. OPEN reason codes in the ACBERFLG field of the ACB... 168

 ix

24. Return codes in register 15 after CLOSE..173

25. CLOSE reason codes in the ACBERFLG field of the ACB..173

26. Return codes in register 15 after control block manipulation macros... 174

27. GENCB, MODCB, SHOWCB, and TESTCB reason codes returned in register 0.................................... 174

28. Return code in register 15 after an asynchronous request... 176

29. Return code in register 15 after a synchronous request... 177

30. Component codes provided in the RPL.. 177

31. Successful-completion reason codes in the feedback area of the request parameter list..................178

32. Logical-error reason codes in the feedback area of the request parameter list.................................. 179

33. Positioning states for reason codes listed for sequential, direct, and skip-sequential processing..... 187

34. Physical-error reason codes in the feedback area of the request parameter list................................ 190

35. Physical error message format for non-RLS processing... 190

36. Physical error message format...192

37. Server failure reason codes in the feedback area of the request parameter list..................................194

38. Return codes in register 15 after BLDVRP request..194

39. Return codes in register 15 after a DLVRP request... 195

40. Return codes in register 15 after end of volume... 196

41. SHOWCAT return codes..196

42. VSAM user-written exit routines.. 197

43. Contents of registers at entry to IGW8PNRU exit routine... 199

44. Contents of registers at entry to EODAD exit routine.. 200

45. Contents of registers at entry to EXCEPTIONEXIT routine... 201

46. Contents of registers at entry to JRNAD exit routine...202

47. Contents of parameter list built by VSAM for the JRNAD exit...204

48. Contents of registers at entry to LERAD exit routine... 209

x

49. Contents of registers for RLSWAIT exit routine... 210

50. Contents of registers at entry to SYNAD exit routine.. 211

51. Conditions when exits to UPAD routines are taken... 214

52. Contents of registers at entry to UPAD exit routine...214

53. Parameter list passed to UPAD routine..215

54. Communication with user-security-verification routine..216

55. Reason code module identifiers...217

56. Definitions of terms related to message keywords... 284

57. X'F61' record information...292

58. Valid trace facility options.. 296

59. Initialization errors... 298

60. SMSVSAM return and reason codes... 300

61. SMPM_CFPurge return and reason codes..302

62. SMPM_CFQuery return and reason codes..303

63. Messages that IDCAMS detects... 306

64. Predefined trace IDs, modules, and functions.. 309

65. PARM1 subparameter bits, byte 0..311

66. PARM1 subparameter bits, byte 1..311

67. PARM1 subparameter bits, byte 2..311

68. PARM1 subparameter bits, byte 3..312

69. PARM1 subparameter bits, byte 4..312

70. PARM1 subparameter bits, byte 5..312

71. PARM2 subparameter bits..313

72. Return codes from the record-management (request) macros - asynchronous requests.................. 315

73. Return codes from the record-management (request) macros - synchronous requests.................... 315

 xi

74. Return codes from the record-management (request) macros - R15=0..316

75. Function codes for logical and physical errors.. 316

76. Contents of registers when a LERAD routine gets control...317

77. Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active... 317

78. Reason codes associated with R15=12... 325

79. Reason codes associated with R15=16... 325

80. Contents of registers when a SYNAD routine gets control.. 326

81. Physical-error reason codes in the RPL feedback field from a request macro.....................................326

82. Format of physical-error messages... 326

83. Control block manipulation return codes...328

84. Control block manipulation error codes...329

xii

About this document

This document is intended for system programmers, storage administrators, and operators who are
responsible for customizing, administering, and operating z/OS DFSMStvs. Primarily, this document
contains reference and guidance information for many of the major tasks that a user might need to
perform when using DFSMS Transactional VSAM Services (DFSMStvs).

This document helps you in these ways:

• Understand certain functions of DFSMS, such as VSAM RLS, and the manner in which DFSMStvs relates
to these functions and builds upon them

• Learn about the migration tasks that you must complete
• Be able to perform tasks such as customizing, administering, and operating DFSMStvs, as well as

diagnosing problems that might be related to DFSMStvs

For information about accessibility features of z/OS, for users who have a physical disability, see
Appendix A, “Accessibility,” on page 331.

Required product knowledge
You should understand the following components and features to use this document effectively:

• Data Facility Storage Management Subsystem (DFSMS)
• Data Facility Storage Management Subsystem data facility product (DFSMSdfp)
• Data Facility Storage Management Subsystem data set services (DFSMSdss)
• Multiple Virtual Storage (MVS™)
• Virtual storage access method (VSAM)
• VSAM record-level sharing (VSAM RLS)

z/OS information
This information explains how z/OS references information in other documents and on the web.

When possible, this information uses cross document links that go directly to the topic in reference using
shortened versions of the document title. For complete titles and order numbers of the documents for all
products that are part of z/OS, see z/OS Information Roadmap.

To find the complete z/OS® library, go to IBM Knowledge Center (www.ibm.com/support/
knowledgecenter/SSLTBW/welcome).

Notational Conventions
This document describes various commands that you can use. A uniform notation describes the syntax of
these commands. This notation is not part of the language; it is merely a way of describing the syntax of
the commands. The command syntax definitions in this book use the following conventions:
[]

Brackets enclose an optional entry. You can, but need not, include the entry. Examples follow:

• [length]
• [MF=E]

© Copyright IBM Corp. 2003, 2020 xiii

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

|
An OR sign (a vertical bar) separates alternative entries. You must specify one, and only one, of the
entries unless you allow an indicated default. Examples follow:

• [REREAD|LEAVE]
• [length|'S']

{ }
Braces enclose alternative entries. You must use one, and only one, of the entries. Examples follow:

• BFTEK={S|A}
• {K|D}
• {address|S|O}

Sometimes alternative entries are shown in a vertical stack of braces. An example follows:

MACRF={{(R[C|P]) }
 {(W[C|P|L]) }
 {(R[C],W[C])}}

In the preceding example, you must choose only one entry from the vertical stack.

...
An ellipsis indicates that the entry immediately preceding the ellipsis can be repeated. For example:

• (Dcbaddr,[(options)],...)

UPPERCASE BOLDFACE
Uppercase boldface type indicates entries that you must code exactly as shown. These entries consist
of keywords and the following punctuation symbols: commas, parentheses, and equal signs.
Examples follow:

• CLOSE , , , ,TYPE=T
• MACRF=(PL,PTC)

UNDERSCORED UPPERCASE BOLDFACE
Underscored uppercase boldface type indicates the default used if you do not specify any of the
alternatives. Examples follow:

• [EROPT={ACC|SKP|ABE}]
• [BFALN={F|D}]

lowercase italic
Lowercase italic type indicates a value that you supply, according to the specifications and limits for
the parameter. Examples follow:

• number
• image-id
• count

xiv z/OS: z/OS DFSMStvs Administration Guide

How to send your comments to IBM

We invite you to submit comments about the z/OS product documentation. Your valuable feedback helps
to ensure accurate and high-quality information.

Important: If your comment regards a technical question or problem, see instead “If you have a technical
problem” on page xv.

Submit your feedback by using the appropriate method for your type of comment or question:
Feedback on z/OS function

If your comment or question is about z/OS itself, submit a request through the IBM RFE Community
(www.ibm.com/developerworks/rfe/).

Feedback on IBM® Knowledge Center function
If your comment or question is about the IBM Knowledge Center functionality, for example search
capabilities or how to arrange the browser view, send a detailed email to IBM Knowledge Center
Support at ibmkc@us.ibm.com.

Feedback on the z/OS product documentation and content
If your comment is about the information that is provided in the z/OS product documentation library,
send a detailed email to mhvrcfs@us.ibm.com. We welcome any feedback that you have, including
comments on the clarity, accuracy, or completeness of the information.

To help us better process your submission, include the following information:

• Your name, company/university/institution name, and email address
• The following deliverable title and order number: z/OS DFSMStvs Administration Guide,

GC52-1388-40
• The section title of the specific information to which your comment relates
• The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive authority to use or distribute the
comments in any way appropriate without incurring any obligation to you.

IBM or any other organizations use the personal information that you supply to contact you only about the
issues that you submit.

If you have a technical problem
If you have a technical problem or question, do not use the feedback methods that are provided for
sending documentation comments. Instead, take one or more of the following actions:

• Go to the IBM Support Portal (support.ibm.com).
• Contact your IBM service representative.
• Call IBM technical support.

© Copyright IBM Corp. 2003, 2020 xv

http://www.ibm.com/developerworks/rfe/
http://www.ibm.com/developerworks/rfe/
mailto:ibmkc@us.ibm.com
mailto:mhvrcfs@us.ibm.com
http://support.ibm.com

xvi z/OS: z/OS DFSMStvs Administration Guide

Summary of changes

This information includes terminology, maintenance, and editorial changes. Technical changes or
additions to the text and illustrations for the current edition are indicated by a vertical line to the left of
the change.

Summary of Changes for z/OS V2R4

Changed

The following content is changed.

• APAR OA53383 provided updates to the ACBERFLG, which is set to 174 (x'AE). For more information,
see “OPEN return and reason codes” on page 167.

Summary of changes for z/OS Version 2 Release 3 (V2R3) and its updates
This information contains no technical changes for this release.

z/OS Version 2 Release 1 summary of changes
See the Version 2 Release 1 (V2R1) versions of the following publications for all enhancements related to
z/OS V2R1:

• z/OS Migration
• z/OS Planning for Installation
• z/OS Summary of Message and Interface Changes
• z/OS Introduction and Release Guide

© Copyright IBM Corp. 2003, 2020 xvii

xviii z/OS: z/OS DFSMStvs Administration Guide

Chapter 1. Evaluating, planning, and installing
DFSMStvs

This topic provides information to help you evaluate, plan for, and install DFSMStvs.

Evaluating and planning for DFSMStvs
This topic provides information to help you evaluate your installation's readiness to use DFSMStvs and to
help you plan for using it.

Software dependencies
The following software is required for DFSMStvs, which is a licensed feature of z/OS Version 1 Release 4
or above.

z/OS

DFSMStvs is available on z/OS Version 1 Release 4 or above.

Use of DFSMStvs requires services that the system logger and recoverable resource management
services (RRMS) provide. The system logger and RRMS were shipped in earlier releases of z/OS.

DFSMS

DFSMStvs requires the DFSMS component of z/OS Version 1 Release 4 or above.

Changes to the lock information stored in the coupling facility for DFSMStvs require compatibility PTFs for
any DFSMS 1.3 systems that might be running VSAM record-level sharing (VSAM RLS) in a sysplex where
DFSMStvs is also used.

New IDCAMS SHCDS commands that are routed to all of the systems in the sysplex require a
compatibility PTF to any sharing DFSMS 1.3 systems to handle these commands correctly.

CICS Transaction Server

To exploit the functions that VSAM RLS provides, you need CICS® Transaction Server (CICS TS) Version 1
Release 1 or later, which provides these features:

• VSAM RLS support, enabling CICS systems to share the VSAM data sets directly rather than function
shipping to a file owning region

• Application programming interface (API) extensions for VSAM RLS
• The CICS TS log manager
• The CICS TS recovery manager

If you are running DFSMStvs and CICS TS, a compatibility PTF is required for CICS TS because DFSMStvs
support requires some changes to the VSAM problem determination information used to report locking
conflicts. The problem determination information is used by both DFSMStvs and CICS TS.

CICS VSAM Recovery

DFSMStvs supports the data set forward recovery option introduced into VSAM cluster definitions by
VSAM RLS. DFSMStvs logs the redo records to system logger log streams. These log streams are shared
across all DFSMStvs instances and CICS systems. This provides sysplex-wide, merged log streams, which
you can use as input to CICS VSAM Recovery (CICSVR) or other forward recovery products. To enable
these products to process DFSMStvs forward recovery log records with minimal changes, the log records
were designed to be as similar to those written by CICS as possible.

CICSVR version 2 release 3 or higher is needed.

Evaluating, planning, and installing DFSMStvs

© Copyright IBM Corp. 2003, 2020 1

Global Resource Serialization

Global Resource Serialization (GRS) or an equivalent product is required to ensure cross-system
serialization of VSAM resources and other DFSMS control structures altered by DFSMStvs and VSAM RLS.

z/OS Security Server

You need Resource Access Control Facility (RACF®), a component of z/OS Security Server 2.1, or an
equivalent product to provide authorization for and protection of data and system resources:

• An RACF FACILITY class profile, STGADMIN.IGWSHCDS.REPAIR, controls access to the IDCAMS SHCDS
command functions, which you can use to list outstanding SMSVSAM recovery requirements and control
that recovery. If you do not use RACF to secure your installation, ensure that your security product
supports the new class name and the new FACILITY class profile.

• The SMSVSAM address space must be given authority to use the system logger log streams.
• To allow DFSMStvs to do automated BACKOUT and RETRY recovery for transactions, the region must be

PRIVILEGED or TRUSTED, or the SMSVSAM address space must be part of a class that has UPDATE
access to the data sets to be recovered.

If you use RACF as your external security manager, you need a minimum of RACF Version 2 Release 1
(5695-039) and PTFs to provide the required support for the LOGSTRM general resource class and to
enable general resource class profile names for journals to be up to 17 characters long.

IMS

If a batch job uses both VSAM data sets and IMS databases, IMS version 6 or higher is needed so that IMS
uses the MVS RRS services. This will allow two-phase commit to be done for both VSAM and IMS requests
in the batch job.

DB2

If a batch job is to use both VSAM data sets and DB2® tables, DB2 version 5 or higher is needed so that
DB2 will use MVS RRS services. This makes use of the DB2 Recoverable Resource Services Attachment
Facility, RRSAF.

Language products

Runtime library support for COBOL, PL/I and C is provided by the Language Environment® (LE) component
of z/OS. VSAM RLS support was originally provided in LE version 1 release 5. Because LE is part of the
z/OS base elements, it now has the same version and release number as the level of z/OS with which it is
shipped.

Language Environment

LE includes the following support for DFSMStvs:

• Conforming with DFSMStvs restrictions
• Handling new VSAM error codes, as necessary
• For languages that support dynamic allocation, including facilities in the language to specify the CRE

read integrity option
• Externalizing the TIMEOUT value in the RPL to enable lock requests to time out if they cannot be
satisfied within the time specified

The key item for support of DFSMStvs is the libraries used, not the compiler. So, while VS/COBOL II
programs will work if they use the correct Language Environment libraries, they will not work with the VS
COBOL II libraries.

Both COBOL and C have the ability to create self-contained load modules. At a minimum, relinking such
programs is required for them to use the DFSMStvs support in LE.

Programming languages and environments

You can use these programming languages and environments with DFSMStvs:

Evaluating, planning, and installing DFSMStvs

2 z/OS: z/OS DFSMStvs Administration Guide

• High-Level Assembler/MVS (5696-234)
• IBM COBOL for z/OS version 2 (5648-A25)
• IBM COBOL for MVS version 1 (5688-197)

Restricted OS/VS COBOL language statements that result in a call to MVS GETMAIN services worked on
earlier releases. Now, a COBOL verb that results in an MVS GETMAIN will cause an 0C4 abend. In these
cases, it is not the application program itself that appears to cause the 0C4. The end-of-service date for
this compiler was 12/31/2001.

• VS/COBOL II (5668-958 and 5688-023). No support is provided for NORES programs (CICS or batch).
The Language Environment libraries must be used. VS/COBOL II went out of service in March 2001.

• C/370 Version 1, Release 2 or later (5688-040)
• IBM C/C++ for MVS/ESA Version 3, Release 1 or later (5655-121)
• VisualAge® PL/I for z/OS (5655-B22)
• IBM PL/I for MVS version 1 (5688-235)
• OS PL/I Optimizing Compiler Version 2, Release 1 or later (5668-910)
• OS PL/I Optimizing Compiler Version 1, Release 5.1 or later (5734-PL1)

CICS also supports IBM SAA AD/Cycle Language Environment/370 Version 1, Release 1 and Release 2
runtime environment (5688-198) with the following COBOL, C/370, and PL/I SAA AD/Cycle compilers:

• SAA AD/Cycle COBOL/370 (5688-197)
• SAA AD/Cycle C/370 (5688-216)
• SAA AD/Cycle PL/I (5688-235)

Processing restrictions
The following restrictions apply to DFSMStvs processing:

• VSAM RLS and DFSMStvs do not support these features:

– Linear data sets
– Control interval access (CNV) for any data set organization.
– Addressed access to a KSDS
– Access to key range data sets
– Access to clusters with the IMBED attribute
– Access to temporary data sets
– Access using the ISAM compatibility interface
– Open of the individual components of a cluster
– Direct open of an alternate index
– Use of GETIX and PUTIX
– Checkpoint/restart
– Catalogs accessed in RLS or DFSMStvs mode
– VVDSs access in RLS or DFSMStvs mode
– The ACBSDS specification
– Implicit positioning at OPEN; an explicit POINT or GET NSP is required
– Hiperbatch
– CFX (ignored; NFX is assumed)
– DDN/DSN (ignored)
– DFR (ignored; NDF is assumed for direct requests that do not specify NSP)
– Improved control interval processing

Evaluating, planning, and installing DFSMStvs

Chapter 1. Evaluating, planning, and installing DFSMStvs 3

– Control blocks in common (CBIC)
– UBF (user buffering)
– SHRPOOL (ignored)

• z/OS DFSMStvs Planning and Operating Guide describes some additional restrictions.

Migrating to z/OS Version 1 Release 4
This topic provides information that you need to consider before migrating your z/OS system to use
DFSMStvs and describes migration tasks. For more information on migrating DFSMS to z/OS Version 1
Release 4, see z/OS Upgrade Workflow.

DFSMStvs enables you to run batch VSAM processing concurrently with CICS online transactions. You can
run multiple batch jobs and online transactions against the same VSAM data, in data sets defined as
recoverable, with concurrent updates. DFSMStvs offers these features:

• Concurrent shared update of VSAM recoverable data sets across CICS transactions and batch
applications

• Ability to run multiple batch jobs concurrently instead of serially
• Logging, commit, and backout functions
• 24 x 7 CICS Transaction Server (TS) applications
• Data sharing across CICS TS applications, batch applications, and local or distributed object-oriented

(OO) applications

Building on the functionality of VSAM RLS, DFSMStvs provides transactional capability within the file
system. If a batch job fails during concurrent shared updates of recoverable VSAM data sets, DFSMStvs
provides the services to back out any changes that the batch job made automatically, restoring the data
to the state it was in at the last synchronization point (commit or back out).

You can use DFSMStvs in two major areas:

• Transactional processing provides data sharing for recoverable resources. Transactional processing
ensures that the data is kept in sync while multiple parties update the data and ensures data integrity in
the event of a job or system failure. Products such as CICS, IMS, and DB2 provide a transactional
environment.

• Transactional recovery isolates the changes made to recoverable resources into logical units of work
that are recoverable. When a transaction makes a change, only that transaction can update the changed
data. After DFSMStvs commits the transaction, all data associated with that logical unit of work is
available to other transactions for update.

DFSMStvs also supports forward recovery logging for data sets that are defined as forward recoverable
(the LOG parameter value is ALL). If data is lost or damaged, you can restore it from a backup, and you
can use a forward recovery utility such as CICS VSAM Recovery (CICSVR) to reapply changes that were
made since the last backup.

CICSVR automates the recovery of lost or damaged VSAM data sets. It determines what CICS journals
and VSAM backups are needed, and it constructs the recovery jobs. CICSVR provides automated
complete recovery, forward recovery, and backout functions. CICSVR VSAM batch logging is available
with CICS VSAM Recovery V3R1. For more information about CICSVR, see CICS Transaction Server for
z/OS (www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html).

Implementing DFSMStvs could affect the following areas of your processing environment.

Implementing DFSMStvs could affect the following areas of your processing environment.

Area Considerations

System customization Updated IGDSMSxx member of SYS1.PARMLIB

DFSMStvs log stream definitions and initialization parameters

Evaluating, planning, and installing DFSMStvs

4 z/OS: z/OS DFSMStvs Administration Guide

http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html

Implementing DFSMStvs could affect the following areas of your processing environment. (continued)

Area Considerations

Storage administration DFSMSdfp: New DFSMStvs parameters in the IGDSMSxx member of
SYS1.PARMLIB and in the MVS SET SMS, VARY SMS, and SETSMS commands

DFSMSdss: Data sets designated by DFSMStvs as eligible for backup-while-open
processing

Operations None

Auditing None

Magnetic tapes Block sizes of up to 262 144 bytes

Application development Job control language (JCL) statements: You can specify the RLS parameter with
the CRE (consistent read explicit) subparameter.

Access method services: The ALLOCATE, ALTER, DEFINE ALTERNATEINDEX,
DEFINE CLUSTER, and DEFINE PATH commands have been updated for
DFSMStvs.

Macros: The ACB, GENCB, GET UPD, IDALKADD, RPL, POINT, and PUT UPD
macros have been updated for DFSMStvs.

Messages and codes Many MVS system messages have been added or changed for DFSMStvs,
including new routing and descriptor codes. For descriptions of these messages
and codes, see z/OS MVS System Messages, Vol 6 (GOS-IEA), z/OS MVS System
Messages, Vol 8 (IEF-IGD), and z/OS MVS System Messages, Vol 9 (IGF-IWM).

General use Before using DFSMStvs, evaluate which applications are good candidates and
which applications cannot support the necessary changes.

SYS1.PARMLIB changes for DFSMStvs
The following table lists the new and changed parameters for the IGDSMSxx member of SYS1.PARMLIB
for DFSMStvs for z/OS V1R4 and later.

Table 1. New and changed parameters for IGDSMSxx for z/OS V1R4 and later

Parameter name Description

AKP Specifies the activity keypoint trigger value, which is the number of logging
operations between taking keypoints, for one or more DFSMStvs instances.

LOG_OF_LOGS Specifies the log stream to use as the log of logs.

MAXLOCKS Specifies the maximum number of unique lock requests that a single unit
of recovery can make.

QTIMEOUT Specifies the quiesce exit timeout value.

RLSTMOUT Specifies a timeout value for DFSMStvs requests for required locks.

SYSNAME Specifies the name or names of the systems on which DFSMStvs instances
are to run.

TVSNAME Specifies the identifier or identifiers of DFSMStvs instances that are to run
in the sysplex.

TV_START_TYPE Specifies the type of start that each instance of DFSMStvs is to perform.

For more information, see z/OS MVS Initialization and Tuning Reference and z/OS DFSMStvs Planning and
Operating Guide.

Evaluating, planning, and installing DFSMStvs

Chapter 1. Evaluating, planning, and installing DFSMStvs 5

JCL changes for DFSMStvs
The following table lists changes to JCL for DFSMStvs support for /OS V1R4 and later. For more
information, see z/OS MVS JCL Reference and z/OS DFSMStvs Planning and Operating Guide.

Table 2. Changed JCL statements for z/OS V1R4 and later

Statement Description

EXEC Changed parameter: RLSTMOUT

Specifies a timeout value for DFSMStvs requests for required locks.

RLS New parameter: CRE

Obtains a shared lock for VSAM RLS.

System command changes for DFSMStvs
The following sections lists new and changed system-level commands that are related to DFSMStvs
support for z/OS V1R4 and later. For more information about any of these commands, see z/OS MVS
System Commands and z/OS DFSMStvs Planning and Operating Guide.

DISPLAY SMS

Table 3. New parameters for the DISPLAY SMS system command for z/OS V1R4 and later

New parameter Description

DSNAME Displays all jobs that currently access the data set using DFSMStvs
access on the systems within the sysplex.

JOB Displays information about a particular job that is using DFSMStvs
services on one of the systems in the sysplex.

LOG Displays information about a log stream that DFSMStvs is using on one
of the systems in the sysplex.

OPTIONS Displays all of the SMS parameters and their status at the time this
command is issued. When DFSMStvs is running on the system, the
output of this command includes DFSMStvs information.

SHUNTED Displays the entries that are currently contained in the shunt logs of the
systems in the sysplex.

TRANVSAM Displays information about the instance of DFSMStvs on this system or
on all systems in the sysplex.

URID Displays information about an active unit of recovery within the sysplex.

SET SMS

Table 4. New and changed parameters for the SET SMS system command for z/OS V1R4 and later

New and changed parameter Description

AKP (new) Specifies the activity keypoint trigger value, which is the number of
logging operations between taking keypoints, for one or more
DFSMStvs instances.

LOG_OF_LOGS (new) Specifies the log stream that is to be used as the log of logs.

MAXLOCKS (new) Specifies the maximum number of unique lock requests that a single
unit of recovery can make.

Evaluating, planning, and installing DFSMStvs

6 z/OS: z/OS DFSMStvs Administration Guide

Table 4. New and changed parameters for the SET SMS system command for z/OS V1R4 and later
(continued)

New and changed parameter Description

QTIMEOUT (new) Specifies the quiesce exit timeout value.

RLSTMOUT (changed) Specifies a timeout value for DFSMStvs requests for required locks.

SYSNAME (new) Specifies the name or names of the systems on which DFSMStvs
instances are to run.

TVSNAME (new) Specifies the identifier or identifiers of DFSMStvs instances that are to
run in the sysplex.

TV_START_TYPE (new) Specifies the type of start that each instance of DFSMStvs is to perform.

SETSMS

Table 5. New and changed parameters for the SETSMS system command for z/OS V1R4 and later

New or changed parameter Description

AKP (new) Changes the activity keypoint trigger value, which is the number of
logging operations between taking keypoints, for one or more DFSMStvs
instances.

MAXLOCKS (new) Changes the maximum number of unique lock requests that a single
unit of recovery can make.

QTIMEOUT (new) Changes the quiesce exit timeout value.

RLSTMOUT (changed) Changes a timeout value for DFSMStvs requests for required locks.

VARY SMS

Table 6. New and changed parameters for the VARY SMS system command for z/OS V1R4 and later

New or changed parameter Description

LOG (new) Enables, quiesces, or disables DFSMStvs access to a log
stream.

SMSVSAM,SPHERE (new) Quiesces or unquiesces a data set for DFSMStvs or RLS access.

TRANVSAM (new) Enables, quiesces, or disables a DFSMStvs instance or all
DFSMStvs instances in the sysplex.

TRANVSAM(nnn),PEERRECOVERY
(changed)

Starts or stops peer recovery processing for a failed instance of
DFSMStvs.

Access method services
This section lists changes to access method services (IDCAMS) commands related to DFSMStvs support.
For more information about the commands, see z/OS DFSMS Access Method Services Commands and z/OS
DFSMStvs Planning and Operating Guide.

Evaluating, planning, and installing DFSMStvs

Chapter 1. Evaluating, planning, and installing DFSMStvs 7

ALLOCATE command

Table 7. Updates to the ALLOCATE command for z/OS V1R4 and later

Changed parameters Description

BWO(TYPECICS) The TYPECICS option of the BWO parameter specifies backup-while-
open (BWO) in a DFSMStvs environment. For RLS processing, this
parameter activates BWO processing for DFSMStvs.

DATACLAS CISIZE For DFSMStvs, specification of n*2 KB avoids wasting space in the
coupling facility cache structure.

SHAREOPTIONS When you use DFSMStvs access, DFSMS assumes that the value of
SHAREOPTIONS is (3,3).

ALTER command

Table 8. Updates to the ALTER command for z/OS V1R4 and later

Changed parameters Description

BWO(TYPECICS) The TYPECICS option of the BWO parameter specifies backup-while-
open (BWO) in a DFSMStvs environment. For RLS processing, this
parameter activates BWO processing for DFSMStvs.

DATACLAS CISIZE For DFSMStvs, specification of n*2 KB avoids wasting space in the
coupling facility cache structure.

SHAREOPTIONS When you use DFSMStvs access, DFSMS assumes that the value of
SHAREOPTIONS is (3,3).

BWO(TYPECICS) The TYPECICS option of the BWO parameter specifies backup-while-
open (BWO) in a DFSMStvs environment. For RLS processing, this
activates BWO processing for DFSMStvs.

LOG Establishes whether the sphere to be accessed with DFSMStvs is
recoverable or nonrecoverable.

LOG(UNDO) specifies that changes to the sphere accessed in DFSMStvs
mode can be backed out using an external log. DFSMStvs considers the
sphere recoverable.

LOG(ALL) specifies that changes to the sphere accessed in DFSMStvs
mode can be backed out and forward recovered using an external log.
DFSMStvs considers the sphere recoverable. LOGSTREAMID must also be
defined.

LOGSTREAMID Changes or adds the name of the DFSMStvs forward recovery log stream,
for all components in the VSAM sphere.

DEFINE ALTERNATEINDEX command

Table 9. Updates to the DEFINE ALTERNATEINDEX command for z/OS V1R4 and later

Changed parameters Description

BUFFERSPACE When you use DFSMStvs access, DFSMS ignores the BUFFERSPACE
parameter.

CONTROLINTERVALSIZE For DFSMStvs, specification of n*2K avoids wasting space in the coupling
facility cache structure.

Evaluating, planning, and installing DFSMStvs

8 z/OS: z/OS DFSMStvs Administration Guide

Table 9. Updates to the DEFINE ALTERNATEINDEX command for z/OS V1R4 and later (continued)

Changed parameters Description

KEYRANGES You cannot open key range data sets for DFSMStvs processing because
DFSMS no longer supports this parameter.

SHAREOPTIONS When you use DFSMStvs access, DFSMS assumes that the value of
SHAREOPTIONS is (3,3).

WRITECHECK When you use DFSMStvs access, DFSMS ignores the WRITECHECK
parameter.

DEFINE CLUSTER command

Table 10. Updates to the DEFINE CLUSTER command for z/OS V1R4 and later

Changed parameters Description

BUFFERSPACE When you use DFSMStvs access, DFSMS ignores the BUFFERSPACE
parameter.

BWO(TYPECICS) The TYPECICS option of the BWO parameter specifies backup-
whileopen (BWO) in a DFSMStvs environment. For RLS processing, this
activates BWO processing for DFSMStvs.

CONTROLINTERVALSIZE For DFSMStvs, specification of n*2K avoids wasting space in the coupling
facility cache structure.

KEYRANGES You cannot open key range data sets for DFSMStvs processing because
DFSMS no longer supports this parameter.

LOG Establishes whether the sphere to be accessed with DFSMStvs is
recoverable or nonrecoverable.

LOG(UNDO) specifies that changes to the sphere accessed in DFSMStvs
mode can be backed out using an external log. DFSMStvs considers the
sphere recoverable.

LOG(ALL) specifies that changes to the sphere accessed in DFSMStvs
mode can be backed out and forward recovered using an external log.
DFSMStvs considers the sphere recoverable. LOGSTREAMID must also be
defined.

If you use LOG(NONE), DFSMStvs considers the sphere to be
nonrecoverable.

LOGSTREAMID Changes or adds the name of the DFSMStvs forward recovery log stream,
for all components in the VSAM sphere.

SHAREOPTIONS When you use DFSMStvs access, DFSMS assumes that the value of
SHAREOPTIONS is (3,3).

WRITECHECK When you use DFSMStvs access, DFSMS ignores the WRITECHECK
parameter.

DEFINE PATH command

For more information about NOUPDATE, see z/OS DFSMS Access Method Services Commands.

Table 11. Updates to the DEFINE PATH command for z/OS V1R4 and later

Changed parameters Description

NOUPDATE Has the same meaning for DFSMStvs as it does for RLS.

Evaluating, planning, and installing DFSMStvs

Chapter 1. Evaluating, planning, and installing DFSMStvs 9

SHCDS command

For more information, see “Listing and controlling SMSVSAM recovery” on page 46 and z/OS DFSMStvs
Planning and Operating Guide.

Table 12. Updates to the SHCDS command for z/OS V1R4 and later

New and changed
parameters

Description

LISTDS (changed) A new optional JOBS keyword returns a list of the jobs that currently
access the data set in DFSMStvs mode.

LISTSHUNTED (new) Lists information about work that was shunted due to an inability to
complete a syncpoint (commit or backout) for a data set, a unit of
recovery, or all shunted units of recovery.

PURGE (new) Discards log entries and releases the associated locks, for use when a
data set is damaged and you cannot restore it to a state that is consistent
with the log entries.

RETRY (new) Retries the syncpoint, for use when you can restore a data set to a state
that is consistent with the log entries.

Changes to the executable macros
This section lists new and changed executable macros. For more information about those macros, see
“Coding VSAM macros” on page 117 and z/OS DFSMStvs Planning and Operating Guide.

ACB

Note: DFSMStvs ignores the MAREA parameter.

Table 13. Updates to the ACB macro for z/OS V1R4 and later

New or changed
parameters

Description

CTRLACB= (changed) Specifies whether the opened ACB is to be used as a control ACB. For
applications using DFSMStvs, the value of this parameter should not be
YES.

MACRF= (changed) The RLS subparameter enables DFSMStvs access to a VSAM data set, as
well as RLS access. VSAM uses cross-system record-level locking as
opposed to CI locking, uses the CF for buffer consistency, and manages a
system-wide local cache.

DFSMStvs access requires the NUB subparameter, which specifies that
management of I/O buffers is left up to VSAM.

DFSMStvs does not support ADR access to a KSDS.

DFSMStvs ignores the CFX subparameter and assumes that the NFX
subparameter is in effect.

For DFSMStvs, the NRM subparameter does not allow the direct open of
an alternate index.

DFSMStvs does not affect key processing, which the KEY subparameter
specifies.

The AIX®, CNV, ICI, UBF subparameters are invalid for DFSMStvs.

DFSMStvs ignores the DDN, DFR, DSN, LEW, NDF, NLW subparameters.

Evaluating, planning, and installing DFSMStvs

10 z/OS: z/OS DFSMStvs Administration Guide

Table 13. Updates to the ACB macro for z/OS V1R4 and later (continued)

New or changed
parameters

Description

RLSREAD= (changed) For DFSMStvs access, the new CRE keyword specifies consistent read
explicit so that an application can inhibit update or erase of a record by
other transactions or applications until commit or backout. CRE can be
specified only with MACRF=RLS.

RMODE31= (changed) If MACRF=RLS is specified, RMODE31=ALL is assumed. For RLS and
DFSMStvs, VSAM control blocks and buffers are located in a data space
that is owned by the SMSVSAM server address space and are not directly
addressable.

GENCB

Note: DFSMStvs ignores the BSTRNO, BUFND, BUFNI, BUFSP, JRNAD, MAREA, MLEN, SHRPOOL,
SUBSYSNM, and UPAD parameters.

Table 14. Updates to the GENCB macro for z/OS V1R4 and later

New or changed
parameters

Description

CTRLACB= (changed) Specifies whether the opened ACB is to be used as a control ACB. For
applications using DFSMStvs, the value of this parameter should not be
YES.

RLSREAD= (changed) For DFSMStvs access, the new CRE keyword specifies consistent read
explicit so that an application can inhibit update or erase of a record by
other transactions or applications until commit or backout. CRE can be
specified only with MACRF=RLS.

RMODE31= (changed) For DFSMStvs, VSAM control blocks and buffers are located in a data
space that is owned by the SMSVSAM server address space and are not
directly addressable. RMODE31=ALL, which specifies that VSAM control
blocks and I/O buffers are obtained above 16 megabytes, is assumed for
DFSMStvs processing.

STRNO= (changed) For DFSMStvs, STRNO is ignored and strings are dynamically acquired up
to a limit of 1024.

Messages and codes
For DFSMStvs descriptions of VSAM return and reason codes, see “Understanding VSAM macro return
and reason codes” on page 167.

For descriptions of new and changed DFSMSdfp messages and return and reason codes for DFSMStvs,
refer to z/OS MVS System Messages, Vol 6 (GOS-IEA), z/OS MVS System Messages, Vol 8 (IEF-IGD), and
z/OS MVS System Messages, Vol 9 (IGF-IWM).

For a listing of other new and changed DFSMSdfp messages and return and reason codes, see z/OS
Release Upgrade Reference Summary.

Migration tasks
You need to consider each migration task in the following list to implement this change. Required tasks
apply to any DFSMS installation enabling the function. Optional tasks apply to only specified operating
environments or to situations where there is more than one way to set up or enable the function. For more
details on the procedures associated with a given task, see the procedure reference (column 3).

Evaluating, planning, and installing DFSMStvs

Chapter 1. Evaluating, planning, and installing DFSMStvs 11

This table lists migration tasks.

System-level tasks Condition Procedure reference

Update the IGDSMSxx member of SYS1.PARMLIB with
DFSMStvs parameters

Required z/OS MVS Initialization and
Tuning Reference

Define resources for DFSMStvs:

• Create the coupling facility structures for storing log
stream data

• Define the maximum number of log streams for each
structure

• Create the log stream definitions that DFSMStvs needs
for its system logs

• Define staging data sets
• Authorize access to system log streams
• Ensure that at least two active data sets and one

spare, sharing control data set are always placed for
maximum availability

Required z/OS DFSMStvs Planning and
Operating Guide

This table lists migration tasks.

Application-level tasks Condition Procedure reference

For DFSMStvs applications that use COBOL, PL/I, and
C/370 runtime libraries, ensure that the following
conditions apply:

• The application can use DFSMStvs. Ensure that the
application functions correctly in a multiple-update
environment before you specify DFSMStvs access.

• COBOL, PL/I, and C/370 support DD-based allocation,
in which case you can use the JCL RLS parameter to
specify the read integrity option. The recoverable data
set is open for DFSMStvs access if its catalog entry
specifies that logging is requested and if either CRE is
requested or the data set is open for output.

• If you use DD allocation, you might not need to
recompile the application for DFSMStvs.

Recommendation: Do some conversion of the
application to make use of syncpoint processing.

• COBOL has the ability to create self-contained load
modules.

Optional • z/OS DFSMStvs Planning and
Operating Guide

• z/OS MVS JCL Reference
• z/OS MVS Programming:

Resource Recovery

Additional information
For additional information about new and changed features that apply to DFSMStvs, see the rest of this
administration guide and the following publications:

• z/OS DFSMStvs Planning and Operating Guide
• z/OS MVS Initialization and Tuning Reference
• z/OS MVS JCL Reference
• z/OS MVS Programming: Resource Recovery
• z/OS MVS Setting Up a Sysplex

Evaluating, planning, and installing DFSMStvs

12 z/OS: z/OS DFSMStvs Administration Guide

• z/OS MVS System Commands

Installing DFSMStvs

Enabling DFSMStvs on your z/OS system
For information about enabling DFSMStvs on your z/OS system, see "Installation Information" in the z/OS
V1R4 PSP upgrade, subsets ZOSGEN and DFSMS.

Coding IGDSMSxx
The IGDSMSxx member of SYS1.PARMLIB contains parameters for the initialization and tuning of
DFSMStvs. For more information about coding IGDSMSxx, see z/OS MVS Initialization and Tuning
Reference.

Evaluating, planning, and installing DFSMStvs

Chapter 1. Evaluating, planning, and installing DFSMStvs 13

Evaluating, planning, and installing DFSMStvs

14 z/OS: z/OS DFSMStvs Administration Guide

Chapter 2. Administering resources for DFSMStvs

This topic describes how to set up the resources that you need for using DFSMStvs.

Controlling access to VSAM data sets
You can specify the following options to control DFSMStvs access to VSAM data sets:

• VSAM record-level sharing (VSAM RLS)
• Read integrity options
• Timeout value for lock requests

If a VSAM data set is recoverable, DFSMStvs can open the data for input within a transaction. A
recoverable VSAM data set is defined with the LOG(UNDO) or LOG(ALL) attribute. For more information
about using recoverable VSAM data sets, see z/OS DFSMStvs Planning and Operating Guide.

Accessing data sets in DFSMStvs mode
This topic describes the use of VSAM data sets for DFSMStvs. For more information about VSAM data sets,
see z/OS DFSMS Using Data Sets.

Using VSAM record-level sharing

VSAM record-level sharing (RLS) is an access option for VSAM data sets. This option provides multisystem
sharing of VSAM data sets across a z/OS Parallel Sysplex®. VSAM RLS exploits the data sharing technology
of the coupling facility (CF) including a CF-based lock manager and a CF cache manager. VSAM RLS uses
the CF-based lock manager and the CF cache manager in its implementation of record-level sharing.

RLS is a mode of access to VSAM spheres. RLS is not an attribute of a sphere. It is an access option
interpreted at open time. The option is selected either by specifying a new JCL parameter (RLS) or by
specifying MACRF=RLS in the ACB. The RLS MACRF option is mutually exclusive with the MACRF NSR
(nonshared resources), LSR (local shared resources), and GSR (global shared resources) options. This
topic uses the term non-RLS access to distinguish between RLS access and NSR/LSR/GRS access.

Access method services do not use RLS when performing EXPORT, IMPORT, PRINT or REPRO commands.
If the RLS keyword is specified in the DD statement of a data set to be opened by access method services,
the keyword is ignored and the data set is opened and accessed in non-RLS mode. See “Non-RLS access
to VSAM data sets” on page 20 for more information about non-RLS access.

RLS access is supported for KSDS, ESDS, RRDS, and VRRDS data sets. RLS access is supported for VSAM
alternate indexes. RLS is not supported for control interval mode access (CNV or ICI) or for UNIX files.

The VSAM RLS functions are provided by the SMSVSAM server. This server resides in a system address
space. The address space is created and the server is started at MVS IPL time. VSAM internally performs
cross-address space accesses and linkages between requestor address spaces and the SMSVSAM server
address space.

The SMSVSAM server owns two data spaces. One data space is called the SMSVSAM data space. It
contains some VSAM RLS control blocks and a system-wide buffer pool. VSAM RLS uses the other data
space, called MMFSTUFF, to collect activity monitoring information that is used to produce SMF records.
VSAM provides the cross-address space access and linkage between the requestor address spaces and
the SMSVSAM address and data spaces. See Figure 1 on page 16.

© Copyright IBM Corp. 2003, 2020 15

DA604082

CICS AOR
Address Space

OPEN
ACB

MACRF=RLS

GET/PUT

CICS AOR
Address Space

OPEN
ACB

MACRF=RLS

GET/PUT

Batch Job
Address Space

OPEN
ACB

MACRF=RLS

GET/PUT

Data Space

RLS Buffer Pool

RLS internal
control blocks

Data Space

RLS Activity

Monitoring

Information

VSAM RLS
(SMSVSAM)

Address Space

Figure 1. VSAM RLS address and data spaces and requestor address spaces

Record-level sharing CF caching

VSAM record-level sharing allows multiple levels of CF caching for DFSMS cache structures that are
defined in the active storage management subsystem (SMS) configuration.

Before z/OS Version 1 Release 3, VSAM RLS placed the data of a VSAM sphere in the CF cache structure
only when the sphere's CI size was less than 4K. For CIs greater than 4K, VSAM RLS placed the first 2K in
the CF cache (to utilize the cross-invalidate features of the coupling facility). To retrieve a CI that was
greater than 4K, VSAM RLS processing would always read the data from a direct access storage device
(DASD) volume.

Since z/OS Version 1 Release 3, VSAM RLS has multiple levels of CF caching. The value of the SMS
DATACLAS RLS CF Cache Value keyword determines the level of CF caching. The default value, ALL,
indicates that RLS caches all data for a sphere in the coupling facility (for both index and data parts of the
sphere). If you specify NONE, then RLS caches only the index part of the VSAM sphere. If you specify
UPDATESONLY, then RLS caches data in the coupling facility only during write operations.

All active systems in a sysplex must have the greater than 4K CF caching code installed before the
function is enabled.

To set up RLS CF caching, use the following values:

• ALL or UPDATESONLY or NONE for the SMS DATACLAS RLS CF Cache Value keyword

To allow greater than 4K caching of DFSMS VSAM data sets open for RLS processing, you need to make
the following changes:

– You can change the value of the SMS DATACLAS RLS CF Cache Value keyword if you do not want
caching of all VSAM RLS data:
ALL

Indicates that RLS is to cache VSAM index and data components. ALL is the default.
NONE

Indicates that RLS is to cache only the VSAM index data. The data components are not to be
placed in the cache structure.

UPDATESONLY
Indicates that RLS is to place only WRITE requests in the cache structure.

– VSAM honors the RLS CF Cache Value keyword only when you specify RLS_MaxCfFeatureLevel(A) and
all systems in the sysplex can run the greater than 4K caching code.

To determine the code level on each system in the sysplex and whether the RLS CF Cache Value
keyword is honored, use the 'D SMS,SMSVSAM', 'D SMS,SMSVSAM,ALL', D SMS,CFCACHE() operator
commands. When DFSMS cache structures connect to the system, VSAM RLS issues an IGW500I

16 z/OS: z/OS DFSMStvs Administration Guide

message to indicate that greater than 4K caching is active. The cache structures connect to the
system through the first instance of a sphere opened on each system.

• You can specify the following values for the RLS_MaxCfFeatureLevel keyword:

– A—This value allows greater than 4K caching if all active VSAM RLS instances in the sysplex have the
correct level of code.

– Z—This is the default value if you do not specify RLS_MaxCfFeatureLevel in the active SMS
configuration. Greater than 4K caching is not allowed.

• RLS_MaxCfFeatureLevel keyword in the SETSMS command
• RLS_MaxCfFeatureLevel keyword in the SET SMSxx command
• RLS_MaxCfCacheFeatureLevel in the D SMS,OPTIONS command

CICS use of VSAM RLS

The Customer Information Control System (CICS) file-control component is a transactional file system
built on top of VSAM. Prior to VSAM RLS, CICS file control performs its own record-level locking. The
VSAM data sets are accessed through a single CICS. Local data sets are accessed by the CICS application-
owning region (AOR) submitting requests directly to VSAM. Remote (shared) data sets are accessed by
the CICS AOR submitting (function shipping) a file-control request to a CICS file-owning region (FOR) and
the FOR submitting a request to VSAM. CICS file control provides transactional function such as commit,
rollback, and forward recovery logging functions for recoverable data sets. Figure 2 on page 17 shows
the AOR, FOR, and VSAM request flow prior to VSAM RLS.

Figure 2. CICS VSAM non-RLS access

The CICS AOR's function ships VSAM requests to access a specific data set to the CICS FOR that owns the
file that is associated with that data set. This distributed access form of data sharing has existed in CICS
for some time.

With VSAM RLS, multiple CICS AORs can directly share access to a VSAM data set without CICS function
shipping. With VSAM RLS, CICS continues to provide the transactional functions. The transactional
functions are not provided by VSAM RLS itself. VSAM RLS provides CF-based record-level locking and CF
data caching. Figure 3 on page 18 shows a CICS configuration with VSAM RLS.

Chapter 2. Administering resources for DFSMStvs 17

Figure 3. CICS VSAM RLS

VSAM RLS is a multisystem server. The CICS AORs access the shared data sets by submitting requests
directly to the VSAM RLS server. The server uses the CF to serialize access at the record level.

Recoverable and nonrecoverable data sets

CICS file control supports a recoverable/nonrecoverable data set concept. The data set definition
includes a recoverability attribute LOG. The attribute options are specified as follows:

• LOG(NONE)—nonrecoverable

Specifies the data set as nonrecoverable. CICS does not perform any logging of changes for a data set
that has this attribute. Neither rollback nor forward recovery is provided.

• LOG(UNDO)—recoverable

Specifies the data set as commit/rollback recoverable. CICS logs the before (UNDO) images of changes
to the data set and backs out the changes if the application requests rollback or if the transaction
terminates abnormally.

• LOG(ALL)—recoverable

Specifies the data set as both commit/rollback recoverable and forward recoverable. In addition to the
logging and recovery functions provided for LOG(UNDO), CICS logs the after (REDO) image of changes to
the data set. The redo log records are used by forward recovery programs/products such as CICSVR
(CICS VSAM recovery) to reconstruct the data set in the event of hardware or software damage to the
data set.

You can specify VSAM recoverable data set attributes in IDCAMS (access method services) DEFINE and
ALTER commands. In the data class, you can specify LOG along with BWO and LOGSTREAMID. If you
want to be able to back up a data set while it is open, you should define them using the IDCAMS
BWO(TYPECICS) parameter. Only a CICS application or DFSMStvs can open a recoverable data set for

18 z/OS: z/OS DFSMStvs Administration Guide

output because VSAM RLS does not provide the logging and other transactional functions required for
writing to a recoverable data set.

When a data set is opened in a non-RLS access mode (NSR, LSR, or GSR), the recoverable attributes of the
data set do not apply and are ignored. The recoverable data set rules have no impact on existing
programs that do not use RLS access.

CICS transactional recovery for VSAM recoverable data sets

The transactional services of CICS provide an ideal environment for data sharing. Exclusive locks held by
VSAM RLS on the modified records cause read-with-integrity and write requests to these records by other
transactions to wait. After the modifying transaction commits or rolls back, the locks are released and
other transactions can access the records.

The CICS rollback (backout) function removes changes made to the recoverable data sets by a
transaction. When a transaction terminates abnormally, CICS implicitly performs a rollback.

The commit and rollback functions protect an individual transaction from changes that other transactions
make to a recoverable data set or other recoverable resource. This lets the transaction logic focus on the
function it is providing and not have to be concerned with data recovery or cleanup in the event of
problems or failures.

Non-CICS use of VSAM RLS

When VSAM RLS is used outside of CICS or DFSMStvs, the applications do not have the transactional
recovery environment. In most cases, this makes read/write data sharing not feasible. The following text
describes the level of support that VSAM RLS provides for non-CICS applications, outside of DFSMStvs.

A non-CICS application outside of DFSMStvs is permitted to open a recoverable data set in RLS mode only
for input. VSAM RLS provides the necessary record-level locking to provide read-with-integrity (if
requested) for the non-CICS application. This support lets multiple CICS applications have the sphere
open for read/write RLS access. CICS provides the necessary transactional recovery for the writes to the
recoverable data set. Concurrently, non-CICS applications outside DFSMStvs can have the sphere open
for read RLS access.

Read sharing of recoverable data sets

A non-CICS application outside DFSMStvs is permitted to open a recoverable data set in RLS mode only
for input. VSAM RLS provides the necessary record-level locking to provide read-with-integrity (if
requested) for the non-CICS application. This support lets multiple CICS applications have the sphere
open for read/write RLS access. CICS provides the necessary transactional recovery for the writes to the
recoverable data set. Concurrently, non-CICS applications outside DFSMStvs can have the sphere open
for read RLS access. VSAM provides the necessary locking. Because the non-CICS application is not
permitted to write to the sphere, transactional recovery is not required.

Read-sharing integrity across KSDS CI and CA splits

VSAM with non-RLS access does not ensure read integrity across splits for non-RLS access to a data set
with cross-region share options 2, 3, and 4. If read integrity is required, the application must ensure it.
When KSDS CI and CA splits move records from one CI to another CI, there is no way the writer can
invalidate the data and index buffers for the reader. This can result in the reader not seeing some records
that were moved.

VSAM RLS can ensure read integrity across splits. It uses the cross-invalidate function of the CF to
invalidate copies of data and index CI in buffer pools other than the writer's buffer pool. This ensures that
all RLS readers, DFSMStvs, CICS, and non-CICS outside DFSMStvs, are able to see any records moved by
a concurrent CI or CA split. On each GET request, VSAM RLS tests validity of the buffers and when invalid,
the buffers are refreshed from the CF or DASD.

Read and write sharing of nonrecoverable data sets

Nonrecoverable data sets do not participate in transactional recovery. Commit and rollback logging do not
apply to these spheres. Because transactional recovery is not required, VSAM RLS permits read and write

Chapter 2. Administering resources for DFSMStvs 19

sharing of nonrecoverable data sets concurrently by DFSMStvs, CICS, and non-CICS applications. Any
application can open the sphere for output in RLS mode.

VSAM RLS provides record locking and buffer coherency across the CICS and non-CICS read/write
sharers of nonrecoverable data sets. However, the record lock on a new or changed record is released as
soon as the buffer that contains the change has been written to the CF cache and DASD. This differs from
the case in which a DFSMStvs or CICS transaction modifies VSAM RLS recoverable data sets and the
corresponding locks on the added and changed records remain held until the end of the transaction.

For sequential and skip-sequential processing, VSAM RLS does not write a modified control interval (CI)
until the processing moves to another CI or an ENDREQ is issued by the application. In the event of an
application abnormal termination or abnormal termination of the VSAM RLS server, these buffered
changes are lost.

While VSAM RLS permits read and write sharing of nonrecoverable data sets across DFSMStvs and CICS
and non-CICS applications, most applications are not designed to tolerate this sharing. The absence of
transactional recovery requires very careful design of the data and the application.

Non-RLS access to VSAM data sets

RLS access does not change the format of the data in the VSAM data sets. The data sets are compatible
for non-RLS access. If the data set has been defined with a cross-region share option of 2, a non-RLS
open for input is permitted while the data set is open for RLS processing; but a non-RLS open for output
fails. If the data set is already open for non-RLS output, an open for RLS fails. Therefore, at any time, a
data set (sphere) can be open for non-RLS write access or open for RLS access.

CICS and VSAM RLS provide a quiesce function to assist in the process of switching a sphere from CICS
RLS usage to non-RLS usage.

Differences between RLS access and non-RLS access

This topic describes the differences between RLS access and non-RLS access.

Share options

For non-RLS access, VSAM uses the share options settings to determine the type of sharing permitted. If
you set the cross-region share option to 2, a non-RLS open for input is permitted while the data set is
already open for RLS access. VSAM provides full read and write integrity for the RLS users, but does not
provide read integrity for the non-RLS user. A non-RLS open for output is not permitted when already
opened for RLS.

VSAM RLS provides full read and write sharing for multiple users; it does not use share options settings to
determine levels of sharing. When an RLS open is requested and the data set is already open for non-RLS
input, VSAM does check the cross-region setting. If it is 2, then the RLS open is permitted. The open fails
for any other share option or if the data set has been opened for non-RLS output.

Locking

Non-RLS provides local locking (within the scope of a single buffer pool) of the VSAM control interval.
Locking contention can result in an “exclusive control conflict” error response to a VSAM record
management request.

VSAM RLS uses a DFSMS lock manager to provide a system-managed duplexing rebuild process. The
locking granularity is at the VSAM record level. When contention occurs on a VSAM record, the request
that encountered the contention waits for the contention to be removed. The DFSMS lock manager
provides deadlock detection. When a lock request is in deadlock, VSAM rejects the request. This results in
the VSAM record management request completing with a deadlock error response.

When you request a user-managed rebuild for a lock structure, the validity check function determines if
there is enough space for the rebuild process to complete. If there is not enough space, the system
rejects the request and displays an informational message.

20 z/OS: z/OS DFSMStvs Administration Guide

When you request an alter operation for a lock structure, the validity check function determines if there is
enough space for the alter process to complete. If there is not enough space, the system displays a
warning message that includes the size recommendation.

VSAM RLS supports a timeout value that you can specify through the RPL, in the PARMLIB, or in the JCL.
CICS uses this parameter to ensure that a transaction does not wait indefinitely for a lock to become
available. VSAM RLS uses a timeout function of the DFSMS lock manager.

Retaining locks

VSAM RLS uses share and exclusive record locks to control access to the shared data. An exclusive lock is
used to ensure that a single user is updating a specific record. The exclusive lock causes any read-with-
integrity request for the record by another user (CICS transaction or non-CICS application) to wait until
the update is finished and the lock released.

Failure conditions can delay completion of an update to a recoverable data set. This occurs when a CICS
transaction enters in-doubt status. This means CICS can neither rollback nor commit the transaction.
Therefore, the recoverable records modified by the transaction must remain locked. Failure of a CICS AOR
also causes the current transaction's updates to recoverable data sets not to complete. They cannot
complete until the AOR is restarted.

When a transaction enters in-doubt, sysplex failure, MVS failure, failure of an instance of the SMSVSAM
Address Space, or a CICS AOR terminates, any exclusive locks on records of recoverable data sets held by
the transaction must remain held. However, other users waiting for these locks should not continue to
wait. The outage is likely to be longer than the user would want to wait. When these conditions occur,
VSAM RLS converts these exclusive record locks into retained locks.

Both exclusive and retained locks are not available to other users. When another user encounters lock
contention with an exclusive lock, the user's lock request waits. When another user encounters lock
contention with a retained lock, the lock request is immediately rejected with “retained lock” error
response. This results in the VSAM record management request that produced the lock request failing
with “retained lock” error response.

If you close a data set in the middle of a transaction or unit of recovery and it is the last close for this data
set on this system, then RLS converts the locks from active to retained.

Supporting non-RLS access while retained locks exist

Retained locks are created when a failure occurs. The locks need to remain until completion of the
corresponding recovery. The retained locks only have meaning for RLS access. Lock requests issued by
RLS access requests can encounter the retained locks. Non-RLS access does not perform record locking
and therefore would not encounter the retained locks.

To ensure integrity of a recoverable sphere, VSAM does not permit non-RLS update access to the sphere
while retained locks exist for that sphere. There can be situations where an installation must execute
some non-CICS applications that require non-RLS update access to the sphere. VSAM RLS provides an
IDCAMS command (SHCDS PERMITNONRLSUPDATE) that can be used to set the status of a sphere to
enable non-RLS update access to a recoverable sphere while retained locks exist. This command does
not release the retained locks. If this function is used, VSAM remembers its usage and informs the CICSs
that hold the retained locks when they later open the sphere with RLS.

If you use the SHCDS PERMITNONRLSUPDATE command, neither CICS nor DFSMStvs has any idea
whether or not it is safe to proceed with pending backouts. Because of this, you must supply exits that
DFSMStvs and CICS call, and each exit must tell the resource manager whether or not to go ahead with
the backout. For more information, see the description of the batch override exit in “IGW8PNRU routine
for batch override” on page 199.

VSAM options not supported by RLS

RLS does not support the following options and capabilities:

• Linear data sets
• Addressed access to a KSDS

Chapter 2. Administering resources for DFSMStvs 21

• Control interval (CNV or ICI) to any VSAM data set type
• User buffering (UBF)
• Clusters that have been defined with the IMBED option
• Key Range data sets
• Temporary data sets
• GETIX and PUTIX requests
• MVS Checkpoint/Restart facility
• ACBSDS (system data set) specification
• Hiperbatch
• Catalogs, VVDS, the JRNAD exit, and any JCL AMP= parameters in JCL
• Data that is stored in z/OS UNIX System Services

In addition, VSAM RLS has the following restrictions:

• You cannot specify RLS access when accessing a VSAM data set using the ISAM compatibility interface.
• You cannot open individual components of a VSAM cluster for RLS access.
• You cannot specify a direct open of an alternate index for RLS access, but you can specify RLS open of

an alternate index path.
• RLS open does not implicitly position to the beginning of the data set. For sequential or skip-sequential

processing, specify a POINT or GET DIR, NSP request to establish a position in the data set.
• RLS does not support a request that is issued while the caller is executing in any of the following modes:

cross-memory mode, SRB mode, or under an FRR. See “VSAM RLS request execution mode
requirements” on page 22 for a complete list of mode requirements.

• RLS does not support UNIX files.

VSAM RLS request execution mode requirements

When a program issues a VSAM RLS request (OPEN, CLOSE, or Record Management request), the
program must be executing in the following execution mode with the listed constraints:

• Task mode (not SRB mode)
• Address Space Control=Primary
• Home address space=Primary address space=Secondary address space
• No functional recovery routine (FRR) can be in effect, but an ESTAE might be.

The VSAM RLS record management request task must be the same task that opened the ACB, or the task
that opened the ACB must be in the task hierarchy. That is, the record management task was attached by
the task that opened the ACB, or by a task that was attached by the task that opened the ACB.

VSAM RLS read integrity options

VSAM RLS provides three levels of read integrity as follows:

1. NRI—no read integrity

This tells VSAM RLS not to obtain a record lock on the record accessed by a GET or POINT request.
This avoids the overhead of record locking. This is sometimes referred to as dirty read because the
reader might see an uncommitted change made by another transaction.

Even with this option specified, VSAM RLS still performs buffer validity checking and buffer refresh
when the buffer is invalid. Thus, a sequential reader of a KSDS does not miss records that are moved to
new control intervals by control interval (CI) and control area (CA) splits.

There are situations where VSAM RLS temporarily obtains a shared lock on the record even though NRI
is specified. This happens when the read encounters an inconsistency within the VSAM sphere while
attempting to access the record. An example of this is path access through an alternate index to a
record for which a concurrent alternate index upgrade is being performed. The path access sees an

22 z/OS: z/OS DFSMStvs Administration Guide

inconsistency between the alternate index and base cluster. This would normally result in an error
response return code 8 and reason code 144. Before giving this response to the NRI request, VSAM
RLS obtains a shared lock on the base cluster record that was pointed to by the alternate index. This
ensures that if the record was being modified, the change and corresponding alternate index upgrade
completes. The record lock is released. VSAM retries the access. The retry should find the record
correctly. This internal record locking may encounter locking errors such as deadlock or timeout. Your
applications must be prepared to accept locking error return codes that may be returned on GET or
POINT NRI requests. Normally such errors will not occur.

2. CR—consistent read

This tells VSAM RLS to obtain a SHARE lock on the record accessed by a GET or POINT request. It
ensures the reader does not see an uncommitted change made by another transaction. Instead, the
GET/POINT waits for the change to be committed or backed out and the EXCLUSIVE lock on the record
to be released.

3. CRE—consistent read explicit

This is the same as CR, except VSAM RLS keeps the SHARE lock on the record until end-of-transaction.
This option is only available to CICS or DFSMStvs transactions. VSAM does not understand end-of-
transaction for non-CICS or non-DFSMStvs usage.

This capability is often referred to as REPEATABLE READ.

The record locks obtained by the VSAM RLS GET requests with CRE option inhibit update or erase of
the records by other concurrently executing transactions. However, the CRE requests do not inhibit the
insert of other records by other transactions. The following cases need to be considered when using
this function.

a. If a GET DIR (Direct) or SKP (Skip Sequential) request with CRE option receives a “record not
found” response, VSAM RLS does not retain a lock on the nonexistent record. The record could be
inserted by another transaction.

b. A sequence of GET SEQ (sequential) requests with CRE option results in a lock being held on each
record that was returned. However, no additional locks are held that would inhibit the insert of new
records in between the records locked by the GET CRE sequential processing. If the application
were to re-execute the previously executed sequence of GET SEQ,CRE requests, it would see any
newly inserted records. Within the transactional recovery community, these records are referred to
as “phantom” records. The VSAM RLS CRE function does not inhibit phantom records.

Specifying read integrity
You can use one of these subparameters of the RLS parameter to specify a read integrity option for a
VSAM data set.
NRI

Specifies no read integrity (NRI). The application can read all records.
CR

Specifies consistent read (CR). This subparameter requests that VSAM obtain a SHARE lock on each
record that the application reads.

CRE
Specifies consistent read explicit (CRE). This subparameter requests serialization of the record access
with update or erase of the record by another unit of recovery.

CRE gives DFSMStvs access to VSAM data sets open for input or output. CR or NRI gives DFSMStvs access
to VSAM recoverable data sets only for output. For information about how to use these read integrity
options for DFSMStvs access, see z/OS DFSMStvs Planning and Operating Guide.

For complete descriptions of these subparameters, see the description of the RLS parameter in z/OS MVS
JCL Reference.

Chapter 2. Administering resources for DFSMStvs 23

Specifying a timeout value for lock requests
You can use the RLSTMOUT parameter of the JCL EXEC statement to specify a timeout value for lock
requests. A VSAM RLS or DFSMStvs request waits the specified number of seconds for a required lock
before the request times out and is assumed to be in deadlock.

For information about the RLSTMOUT parameter, see the description of the EXEC statement in z/OS MVS
JCL Reference.

For information about avoiding deadlocks and additional information about specifying a timeout value,
see z/OS DFSMStvs Planning and Operating Guide and z/OS MVS Initialization and Tuning Guide.

Defining data sets for DFSMStvs access
This topic describes DFSMS access method services that you can use for DFSMStvs. For more information
on access method services, see z/OS DFSMS Access Method Services Commands.

Allocating data sets
Access method services identifies the verb name ALLOCATE and attaches the terminal monitor program
(TMP), which runs Time Sharing Option Extended (TSO/E) commands in the background. You should use
the ALLOCATE command only to allocate new data sets to the job step. If you use ALLOCATE through
access method services for anything else (such as the handling of SYSOUT data sets), you can get
unpredictable results. For more information on using this command, see z/OS TSO/E Programming Guide.
Table 15 on page 26 separates the parameters to be used under access method services from the
parameters that cause unpredictable results.

When you use ALLOCATE, the data set is allocated to the job step. If your job contains multiple
allocations, you might need to use the DYNAMNBR parameter in the job control language (JCL) EXEC
statement. DYNAMNBR establishes a control limit that TMP uses when allocating a data set. The control
limit is the sum of the number of data definition (DD) statements that are coded plus the value coded in
DYNAMNBR. If you do not use DYNAMNBR, the system sets it to 0 (the default). If you code DYNAMNBR
incorrectly, the system uses the default and issues a JCL warning message. For a description of how to
code the DYNAMNBR parameter, see z/OS MVS JCL User's Guide. For an example that illustrates the use
of DYNAMNBR, see “Allocate a data set using SMS class specifications: Example 1” on page 43.

When you use the ALLOCATE command within access method services, you must follow the data set
naming conventions of TSO/E when you run TMP in batch mode:

• If the data set name is not in quotation marks and a USER parameter is given in the JCL, the value in the
USER parameter is prefixed to all data set names given by ALLOCATE.

• If the USER parameter is not in the JCL, no prefix is added to any data set name given by ALLOCATE.

For information about the naming conventions of TSO/E and other considerations when you use access
method services commands from a TSO/E background job, see z/OS TSO/E User's Guide. For information
about the USER parameter and its Resource Access Control Facility (RACF) requirements, see z/OS MVS
JCL Reference.

You can use the ALLOCATE command to define data set attributes in several ways:

• You can use the storage management subsystem (SMS) parameters STORCLAS, MGMTCLAS, and
DATACLAS. You can either define these parameters explicitly or let them use the parameters assigned
by the ACS routines that your storage administrator defines. For information about storage
administration policies and about how the ACS routines might apply, contact your storage
administrator.

You cannot override attributes that the STORCLAS and MGMTCLAS parameters assign. You can override
attributes that the DATACLAS parameter assigns. For example, if you use both the DATACLAS
parameter and the SPACE parameter, SMS assigns all the attributes defined in the DATACLAS
parameter but uses the values you defined in the SPACE parameter when allocating a data set.

ALLOCATE Command

24 z/OS: z/OS DFSMStvs Administration Guide

• You can use the LIKE parameter to allocate a data set with the same attributes as an existing (model)
data set. The model data set must be a cataloged data set. You can override any of the model data set
attributes by stating them in the ALLOCATE command.

• You can identify a data set and explicitly describe its attributes.

Restrictions

• If the access method services job step contains either the SYSTSIN or SYSTSPRT DD statement, the
ALLOCATE command is unsuccessful. Access method services allocates the SYSTSIN and SYSTSPRT
DD statements to pass the command to TMP and to retrieve any error messages that are issued. This is
done for every ALLOCATE command. Any TMP error messages appear in the SYSPRINT data set, and
access method services prints a summary message to show the final status of the command.

• The access method services ALLOCATE command is not supported if access method services is called
in the foreground of TSO/E or if TSO/E Release 2 or later is not installed.

• You cannot use ALLOCATE if you have used the ATTACH macro to call IDCAMS from an application
program. If you do, ALLOCATE fails with an ATTACH return code.

Allocation of SMS-managed data sets

If SMS is active, it can handle data set storage and management requirements for you. The storage
administrator defines SMS classes with ACS routines, which assign classes to a new data set. When a
storage administrator assigns a storage class to a new data set, the data set becomes an SMS-managed
data set. Data class and management class are optional for SMS-managed data sets. For information on
writing ACS routines, see z/OS DFSMSdfp Storage Administration.

Your storage administrator writes ACS routines that assign SMS classes to a data set. The SMS classes
follow:

• Storage class Contains performance and availability attributes you can use to select a volume for a data
set. You do not need to use the volume and unit parameters for a data set that is SMS-managed.

• Data class Contains the attributes related to the allocation of the data set, such as LRECL, RECFM, and
SPACE. The data set attributes, if not specified in the ALLOCATE command, are derived from the model
specified on LIKE, or from the data class. If the system cannot allocate the requested amount of space
on the eligible volumes in the selected storage group, SMS retries allocation with a reduced space
quantity. However, SMS will not do any retries, including reduced space quantity, unless Space
Constraint Relief = Y is specified. If the data class assigned to the data set allows space constraint
relief, other limits can be bypassed.

For a list of the attributes for a data class, see the description of the DATACLAS parameter.
• Management class Contains the attributes related to the migration and backup of the data set by

DFSMShsm™.

Allocation of non-SMS-managed data sets

You can define the DATACLAS parameter to allocate non-SMS-managed data sets. Do not specify the
STORCLAS and MGMTCLAS parameters.

Return codes for the ALLOCATE command
Code Description
0

Allocation successful.
12

Allocation unsuccessful. An error message has been issued.

Refer to SYSPRINT for the error message.

ALLOCATE Command

Chapter 2. Administering resources for DFSMStvs 25

Syntax for ALLOCATE parameters

In the following table, the access method services ALLOCATE parameters appear in the column
"Acceptable parameters". Parameters that might cause unpredictable results if used within access
method services appear in the column "Parameters to use with caution".

Table 15. ALLOCATE command parameters. This table lists the access method services ALLOCATE parameters.

Acceptable parameters Parameters to use with caution

{DATASET(dsname)[FILE(ddname)]} {*|dsname-list}|DUMMY

[ACCODE(access code)]1

[ALTFILE(name)]

[AVGREC(U|K|M)]

[BFALN(F|D)]2

[BFTEK(S|E|A|R)]2

[BLKSIZE(value)]2

[BUFL(buffer-length)]2

[BUFNO(number-of-buffers)]

[BUFOFF({block-prefix-length|L)]}2

[BURST|NOBURST]

 [BWO(TYPECICS|TYPEIMS|NO)]

[CHARS[tablename-list]]

[COPIES((number),[group-value-list])]

[DATACLAS(data-class-name)]

[DEN({0|1|2|3|4})]1

[DEST(destination|destination.userid)]

[DIAGNS(trace)]2

[DIR(integer)]

[DSNTYPE(LIBRARY|PDS)]

[DSORG(DA|DAU|PO|POU|PS|PSU)]2

[EROPT(ACC|SKP|ABE)]

[EXPDT(year-day)|RETPD(number-of-days)]

[FCB(image-id,ALIGN,VERIFY)]

[FLASH(overlay-name,[copies])]

[FORMS(forms-name)]

[HOLD|NOHOLD]

[INPUT|OUTPUT]

[KEEP|CATALOG] [DELETE|UNCATALOG]

[KEYLEN(bytes)]

[KEYOFF(offset)]

ALLOCATE Command

26 z/OS: z/OS DFSMStvs Administration Guide

Table 15. ALLOCATE command parameters. This table lists the access method services ALLOCATE parameters.
(continued)

Acceptable parameters Parameters to use with caution

[LABEL(type)]1

[LIKE(model-dsname)] |[USING(attr-list-name)]

[LIMCT(search-number)]

[LRECL({logical-record-length|

(nnnnnK|X)})]

[MGMTCLAS(management-class-name)]

[MAXVOL(count)]

[MODIFY(module-name,[trc])]

[NEW] [OLD|SHR|MOD]

[NCP(number-of-channel-programs)]2

[OPTCD(A,B,C,E,F,H,J,Q,R,T,W,Z)]2

[OUTDES(output-descriptor-name[,output-descriptor-
name...])]

[POSITION(sequence-number)]1

[PRIVATE]

[PROTECT]

[RECFM(A,B,D,F,M,S,T,U,V)]2

[RECORG(ES|KS|LS|RR)]

[REFDD(dsname)]

[RELEASE]2

[REUSE]

[ROUND]2

[SECMODEL(profile-name[,GENERIC])]

[SPACE(quantity[,increment])

{BLOCK(value)|AVBLOCK(value)|

CYLINDERS|TRACKS}]

[STORCLAS(storage-class-name)]

[SYSOUT(class)]

[TRTCH(C|E|ET|T)]1

[UCOUNT(count)|PARALLEL]

[UCS(universal-character-set-name)]

[UNIT(type)]

[VOLUME(serial-list)]

[VSEQ(vol-seq-number)]

ALLOCATE Command

Chapter 2. Administering resources for DFSMStvs 27

Table 15. ALLOCATE command parameters. This table lists the access method services ALLOCATE parameters.
(continued)

Acceptable parameters Parameters to use with caution

[WRITER(external-writer-name)]

1

Parameters applicable to tape data sets only.
2

Parameters applicable to non-VSAM data sets only.

Abbreviation for the ALLOCATE command: ALLOC

Descriptions of the parameters within access method services follow. For information about ALLOCATE
parameters not described in this topic, see z/OS TSO/E Command Reference.

Required parameters
DATASET(dsname)

Gives the name of the data set to be allocated. The data set name must be fully qualified.

• You must follow the data set naming conventions of TSO/E when you run TMP in batch mode.
• All temporary SMS-managed data sets must either have a name (DSNAME value) that starts with &

or && or have no name.

Non-VSAM temporary data sets are the only uncataloged data sets that you can create.

For more information about temporary data sets, see z/OS MVS JCL Reference. For more information
about VSAM temporary data sets, see z/OS DFSMS Using Data Sets.

• You cannot concurrently allocate data sets that reside on the same physical tape volume.
• For allocation of a generation data group member, provide the fully qualified data set name,

including the generation number.

Abbreviation: DA, DSN, DSNAME
FILE(ddname)

Specifies the name of a data definition (DD) statement, which can be up to eight characters long. If
you omit this parameter, the system assigns an available system file name. Do not use special DD
names unless you want to use the facilities that those names represent to the system. For more
information about AMSDUMP, see z/OS DFSMS Access Method Services Commands. For more
information about the following special DD names, see z/OS MVS JCL Reference:

AMSDUMP SYSABEND
JOBCAT SYSCHK
JOBLIB SYSCKEOV
STEPCAT SYSMDUMP
STEPLIB SYSUDUMP

For more information about these special DD names, see z/OS TSO/E Command Reference:

SYSTSIN SYSTSPRT

You cannot use SYSTSIN and SYSTSPRT in a job step that runs the ALLOCATE command. See
“Restrictions” on page 25 for further information.

Optional parameters
ACCODE(access code)

Gives or changes the accessibility code for an ISO/ANSI output tape data set, which protects it from
unauthorized use. You can use up to eight characters in the access code, but ISO/ANSI validates only
the first character. The ACCODE value can now be any of the following 57 ISO/ANSI a-type
characters: blank, uppercase letters A-Z, numeric 0-9, or one of the special characters !*"%&'()
+,-./:;<=>?_ Note that Version 3 still supports only uppercase characters A-Z. Password protection is

ALLOCATE Command

28 z/OS: z/OS DFSMStvs Administration Guide

supported for ANSI tape data sets under the PASSWORD/NOPWREAD options of the LABEL
parameter. Password access overrides any ACCODE value if you use both options.

ALTFILE(name)
Specifies the name of the SYSIN subsystem data set that is to be allocated. The name can be up to
eight characters long. The system uses this parameter primarily in the background.

This gives the length in bytes of the average block.

AVGREC(U|K|M)
Determines the size of the average record block. You can use these values:
U

Use the primary and secondary quantities as given in the SPACE parameter.
K

Multiply primary space quantity and secondary space quantity by 1024 (1 KB).
M

Multiply primary space quantity and secondary space quantity by 1,048,576 (1 MB).

Use the AVGREC parameter to define a new data set when:

• The units of allocation that are requested for storage space are records.
• The primary and secondary space quantities used with the SPACE parameter represent units,

thousands, or millions of records.

When you use AVGREC with the SPACE parameter, the first subparameter for the SPACE parameter
must give the average record length of the records.

Use the AVGREC parameter when you want to show records as the units of allocation. You can also
use this parameter to override the space allocation defined in the data class for the data set.

If SMS is not active, the system checks syntax and then ignores the AVGREC parameter.

BFALN(F|D)
Gives the boundary alignment of each buffer:
F

Each buffer starts on a fullword boundary that might not be a doubleword boundary.
D

Each buffer starts on a doubleword boundary.

If you do not use this parameter, the system defaults to a doubleword boundary.

BFTEK(S|E|A|R)
Is the type of buffering that you want the system to use:
S

Simple buffering
E

Exchange buffering
A

Automatic record area buffering
R

Record buffering

BFTEK(R) is not compatible with partitioned data sets extended (PDSE) and results in an error if used
with the DSNTYPE(LIBRARY) parameter.

BLKSIZE(value)
Specifies the block size of the data control block (DCB) for the data set. The maximum allowable
decimal value for the block size that is recorded in the DCB is 32,760. You can specify BLKSIZE for
NEW or MOD data sets.

ALLOCATE Command

Chapter 2. Administering resources for DFSMStvs 29

For direct access storage device (DASD) data sets: If you do not use BLKSIZE, the system determines
an optimal DCB block size for a new data set. You can create the DCB block size in any of these ways:

• The system determines the block size if SMS is active and you do not assign the block size.
• You can assign the block size through the BLKSIZE parameter.
• You can use the LIKE parameter to obtain the block size from an existing model data set.
• If you do not assign BLKSIZE or LIKE, the system can determine the block size from the BLOCK

parameter.

The block size that you assign for the DCB must be consistent with the requirements of the RECFM
parameter. If you use:

• RECFM(F), the block size must be equal to, or greater than, the logical record length.
• RECFM(FB), the block size must be an integral multiple of the logical record length.
• RECFM(V), the block size must be equal to, or greater than, the largest block in the data set. (For

unblocked variable-length records, the size of the largest block must allow space for the 4-byte
block descriptor word, in addition to the largest logical record length. The logical record length must
allow space for a 4-byte record descriptor word.)

• RECFM(VB), the block size must be equal to, or greater than, the largest block in the data set. For
block variable-length records, the size of the largest block must allow space for the 4-byte block
descriptor word, in addition to the sum of the logical record lengths that will go into the block. Each
logical record length must allow space for a 4-byte record descriptor word.

Because the number of logical records can vary, estimate the optimum block size and the average
number of records for each block, based on your knowledge of the application that requires the I/O.

• RECFM(U) and BLKSIZE(80), one character is truncated from the line. That character (the last byte)
is reserved for an attribute character.

For PDSEs:

• The system chooses the BLKSIZE value if you do not explicitly specify it. If BLKSIZE is given, the
system treats the BLKSIZE value as the length of the simulated block. For create mode processing,
the logical record length is equal to the block size if LRECL is not given. If you use LRECL, BLKSIZE
must conform to the LRECL and RECFM definitions. If you use:
RECFM(F)

BLKSIZE must equal LRECL
RECFM(FB) or RECFM(FBS)

BLKSIZE must be a multiple of LRECL
RECFM(V) or RECFM(VB)

BLKSIZE must be at least four bytes larger than LRECL
RECFM(VBS)

BLKSIZE must be at least eight bytes.
• For input or update processing, the block size must conform to the currently defined record length.

The BLKSIZE given when the data set was created is the default. However, you can use any BLKSIZE
if it conforms to the record length definition.

BUFL(buffer-length)
Specifies the length, in bytes, of each buffer in the buffer pool. Substitute a decimal number for buffer-
length. The number must not exceed 32,760. If you omit this parameter and the system acquires
buffers automatically, the BLKSIZE and KEYLEN parameters supply the information needed to
establish buffer length.

BUFNO(number-of-buffers)
Specifies the number of buffers that are assigned for data control blocks. Substitute a decimal
number for number-of-buffers. The number must never exceed 255. You can be limited to a smaller
number of buffers depending on the limit established when the operating system was generated. The
following list shows how to get a buffer pool and the action required:

ALLOCATE Command

30 z/OS: z/OS DFSMStvs Administration Guide

Method
Action

BUILD macro instruction
You must use BUFNO

GETPOOL macro instruction
The system uses the number that you assign for GETPOOL

Automatically with BPAM, BSAM
You must use BUFNO

Automatically with QSAM
You can omit BUFNO and accept two buffers

BUFOFF({block-prefix-length|L})
Defines the buffer offset. The block-prefix-length must not exceed 99. L specifies the block prefix field
is 4 bytes long and contains the block length.

BWO(TYPECICS|TYPEIMS|NO)
Use this parameter if backup-while-open (BWO) is allowed for the VSAM sphere. BWO applies only to
SMS data sets and cannot be used with TYPE(LINEAR). If BWO, LOG, or LOGSTREAMID is specified (or
an RLS cell exists for the data set), access from DFSMS/MVS 1.2 or a lower-level system is denied.

If BWO is specified in the SMS data class, the specified BWO value is used as part of the data set
definition, unless BWO was previously defined with an explicitly specified or modeled DEFINE
attribute.
TYPECICS

Use TYPECICS to specify BWO in a CICS or DFSMStvs environment. For RLS processing, this
activates BWO processing for CICS or DFSMStvs, or both. For non-RLS processing, CICS
determines whether to use this specification or the specification in the CICS FCT. See CICS
Transaction Server for z/OS (www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html).

Exception: If CICS determines that it will use the specification in the CICS FCT, the specification
might override the TYPECICS parameter for CICS processing.

Abbreviation: TYPEC

TYPEIMS
Enables BWO processing for IMS data sets. You can use this capability only with DFSMS 1.3 or
higher-level DFSMS systems. If you attempt to open a cluster that has the TYPEIMS specification
of a DFSMS 1.2 (or lower-level) system, the open will not be successful.

Abbreviation: TYPEI

NO
Use this when BWO does not apply to the cluster.

Exception: If CICS determines that it will use the specification in the CICS FCT, the specification
might override the NO parameter for CICS processing.

DATACLAS(data-class-name)
This is the 1- to 8-character name of the data class for either SMS or non-SMS-managed data sets. If
you do not assign DATACLAS for a new data set and the storage administrator has provided an
automatic class selection (ACS) routine, the ACS routine can select a data class for the data set. If you
assign DATACLAS for an existing data set, SMS ignores it. If SMS is not active, the system checks the
syntax and then ignores the DATACLAS parameter.

If you use the data class, you do not need to list all the attributes for a data set. For example, the
storage administrator can provide RECFM, LRECL, RECORG, KEYLEN, and KEYOFF as part of the data
class definition. However, you can override the DATACLAS parameter by explicitly defining the
appropriate parameters in the ALLOCATE command.

The data class defines these data set allocation attributes:

• Data set organization:

ALLOCATE Command

Chapter 2. Administering resources for DFSMStvs 31

http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html

– Record organization (RECORG)
– Record format (RECFM)

• Record length (LRECL)
• Key length (KEYLEN)
• Key offset (KEYOFF)
• Space allocation

– AVGREC
– SPACE

• Expiration date (EXPDT) or retention period (RETPD)
• Volume count (VOLUME)
• For VSAM data sets, the following:

– Index options (IMBED, or REPLICATE, or both)
– Control interval size (CISIZE)

RLS and DFSMStvs support all CISIZE values, but a CISIZE value other than n*2K consumes
space in the coupling facility cache structure because a 2K data element does not have multiple
coupling facilities. If CISIZE is not used and the storage class is a nonblank cache set, the system
factors the default CISIZE.

– Percent free space (FREESPACE)
– Sharing options (SHAREOPTIONS)

- A cluster defined with IMBED cannot be opened for RLS or DFSMStvs access.
- SHAREOPTIONS is assumed to be (3,3) when you use RLS or DFSMStvs.

Table 16. Data class attributes for each data set organization. This table lists data class attributes for
each data set organization.

Attributes KS ES RR LDS

CISIZE X X X X

FREESPACE X

IMBED X

KEYLEN X

KEYOFF X

LRECL X X X

REPLICATE X

SHAREOPTIONS X X X X

SPACE X X X X

Volume Count X X X X

DEN({0|1|2|3|4})
Gives the magnetic tape density as follows:
0

200 bpi/7 track
1

556 bpi/7 track
2

800 bpi/7 and 9 track

ALLOCATE Command

32 z/OS: z/OS DFSMStvs Administration Guide

3
1600 bpi/9 track

4
6250 bpi/9 track (IBM 3420 Models 4, 6, and 8)

DIAGNS(trace)
Specifies the OPEN/CLOSE/End-of-Volume trace option that gives a module-by-module trace of the
OPEN/CLOSE/End-of-Volume work area and your DCB.

DIR(integer)
Gives the number of 256 byte records for the directory of a new partitioned data set. Use this
parameter to allocate a new partitioned data set.

DSNTYPE(LIBRARY|PDS)
Determines allocation of either a partitioned data set (PDS) or a partitioned data set extended (PDSE).
A PDSE must be SMS-managed. If SMS is not active, the system checks the syntax and then ignores
the DSNTYPE parameter.
LIBRARY

A PDSE in record format

For more information on PDSE, see z/OS DFSMS Using Data Sets.

DSORG(DA|DAU|PO|POU|PS|PSU)
the data set organization as:
DA

Direct access
DAU

Direct access unmovable
PO

Partitioned organization
POU

Partitioned organization unmovable
PS

Physical sequential
PSU

Physical sequential unmovable

When you allocate a new data set and do not use the DSORG parameter, these occur:

• If you assign a non-zero to the DIR parameter, DSORG defaults to the partitioned organization (PO)
option.

• If you do not assign a value to the DIR parameter, DSORG defaults to the physical sequential (PS)
option.

• The system does not store default DSORG information in the data set until a program opens and
writes to the data set.

With PDSEs, the PSU and POU options are incompatible and result in an error if used with
DSNTYPE(LIBRARY) while the data set is open for output. If the data set is open for input or update,
PSU and POU are ignored.

To indicate the data set organization for VSAM data sets, see RECORG.

EROPT(ACC|SKP|ABE)
The option you want to run if an error occurs when the system reads or writes a record. The possible
options are as follows:
ACC

Accept the block of records in which the error was found
SKP

Skip the block of records in which the error was found

ALLOCATE Command

Chapter 2. Administering resources for DFSMStvs 33

ABE
End the task abnormally

EXPDT(year-day)|RETPD(number-of-days)
Expiration date or the retention period. The MGMTCLAS maximum retention period, if given, limits the
retention period in this parameter. The system ignores these parameters for temporary data sets.
EXPDT(year-day)

This shows the data set expiration date. Include the year and day as either:

• yyddd, where yy is the last two digits of the year and ddd is the three-digit number for the day of
the year. The maximum for the year is 99 (for 1999), and for the day is 366.

If you enter 99365 or 99366, the system retains your data sets permanently. Do not use those
dates as expiration dates. Use them as no-scratch dates only.

• yyyy/ddd, where yyyy is the four-digit number for the year and ddd is the three-digit number for
the day of the year. This syntax requires a slash. The maximum for the year is 2155. The
maximum for the day is 366.

If you use 1999/365 or 1999/366, the system retains your data sets permanently. Do not use
those dates as an expiration date. Use them as no-scratch dates only.

EXPDT and RETPD are mutually exclusive.

RETPD(number-of-days)
Data set retention period, in days. It can be a one-digit to four-digit decimal number.

RETPD and EXPDT are mutually exclusive.

KEEP|CATALOG
A command processor can modify the final disposition with these parameters.
KEEP

This retains the data set by the system after step termination.
CATALOG

This retains the data set in a catalog after step termination.
KEYLEN(bytes)

This is the length, in bytes, of each of the keys used to locate blocks of records in the data set when
the data set resides on a direct access device.

If an existing data set has standard labels, you can omit this parameter and let the system retrieve the
key length from the standard label. If no source supplies a key length before you enter an OPEN
macro instruction, the system uses zero (no keys). This parameter is mutually exclusive with TRTCH.

When you want to define the key length or to override the key length defined in the data class that the
DATACLAS parameter specifies for the data set, use KEYLEN. The number of bytes follows:

• 1 to 255 for a record organization of key-sequenced (RECORG(KS))
• 0 to 255 for a data set organization of physical sequential (PS) or partitioned (PO)

For PDSEs, you can use 0 or 8. Use 8 only when opening the PDSE for input. Any other value results in
an error.

KEYOFF(offset)
This shows the key position (offset) of the first byte of the key in each record. Use it to define key
offset or override the key offset defined in the data class of the data set. It is only for a key-sequenced
data set (RECORG=KS).

Use KEYOFF parameter to allocate both SMS-managed and non-SMS-managed data sets. If SMS is
not active, however, the system checks syntax and then ignores the KEYOFF parameter.

LABEL(type)
This selects the label processing, one of: SL, SUL, AL, AUL, NSL, NL, LTM, or BLP, which correspond to
the JCL label-types.

ALLOCATE Command

34 z/OS: z/OS DFSMStvs Administration Guide

For VSAM data sets, the system always uses SL, whether you define SL or SUL or neither. NSL, NL, and
BLP do not apply to VSAM data sets.

LIKE(model-dsname)
This names a model data set. The system uses these attributes as the attributes of the new data set
that is being allocated. The model data set must be cataloged and must reside on a direct access
device. The volume must be mounted when you enter the ALLOCATE command.

Note: TSO/E naming conventions apply when you assign model-dsname.

When the ALLOCATE command assigns attributes to a new data set, these attributes are copied from
the model data set if SMS is active:
AVGREC

Size of average record block (kilobyte, megabyte)
BLOCK, AVBLOCK,

TRACKS, CYLINDERS

Space unit
DIR

Directory space quantity
DSORG

Non-VSAM data set organization
KEYLEN

Key length
KEYOFF

Key offset
LRECL

Logical record length
RECFM

Record format
RECORG

VSAM data set organization
SPACE

Primary and secondary space quantities.

The system copies these attributes only if SMS is not active:
BLKSIZE

Block size
EXPDT

Data set expiration date
OPTCD

Optional services code (for ISAM data sets only)
VSEQ

Volume sequence number.

You can still use the LIKE parameter even if you do not have an existing data set with the exact
attributes you want to assign to a new data set. You can use ALLOCATE attributes to override any
model data set attributes you do not want assigned to the new data set.

When you use the LIKE parameter, these rules apply:

• LIKE must be used with the NEW parameter; it cannot be used with OLD, SHR, or MOD.
• Use LIKE with the DATASET parameter; it cannot be used with FILE.
• Only one dsname can be given in the DATASET parameter.

ALLOCATE Command

Chapter 2. Administering resources for DFSMStvs 35

• The system does not copy the block size from the model data set when SMS is active. If you do not
show a block size in the ALLOCATE command, the system determines an optimal block size to
assign to the data set.

• When SMS is active, attributes copied from the model data set override attributes from the data
class.

• If you allocate the new data set with a member name (indicating a partitioned data set), the system
prompts you for directory blocks unless that quantity is either shown in the ALLOCATE command or
defaulted from the LIKE data set.

• If the new data set name is indicated with a member name, but the model data set is sequential and
you have not given the quantity for directory blocks, you are prompted for directory blocks.

If you define the directory value as zero and the model data set is a PDS, the system allocates the new
data set as a sequential data set.

The LIKE, REFDD, and USING operands are mutually exclusive. For more information on the USING
operand, see z/OS TSO/E Command Reference.

LIMCT(search-number)
This is the number of blocks or tracks that the system is to search for a block or available space. The
number must not exceed 32760.

LRECL({logical-record-length|(nnnnnK|X)})
This is the length, in bytes, of the largest logical record in the data set. You must define this parameter
for data sets that consist of either fixed-length or variable-length records.

Use the DATACLAS parameter in place of LRECL to assign the logical record length. If SMS is active
and you use LRECL, the system determines the block size.

If the data set contains undefined-length records, omit LRECL.

The logical record length must be consistent with the requirements of the RECFM parameter and must
not exceed the block size (BLKSIZE parameter), except for variable-length spanned records. If you
use:

• RECFM(V) or RECFM(V B), then the logical record length is the sum of the length of the actual data
fields plus four bytes for a record descriptor word.

• RECFM(F) or RECFM(F B), then the logical record length is the length of the actual data fields.
• RECFM(U), omit the LRECL parameter.

LRECL(nnnnnK) allows users of ANSI extended logical records and users of QSAM "locate mode" to
assign a K multiplier to the LRECL parameter. nnnnn can be a number within 1-16384. The K indicates
that the value is multiplied by 1024.

For variable-length spanned records (VS or VBS) processed by QSAM (locate mode) or BSAM, use
LRECL (X) when the logical record exceeds 32,756 bytes.

For PDSEs, the meaning of LRECL depends upon the data set record format:

• Fixed-format records. For PDSEs opened for output, the logical record length (LRECL) defines the
record size for the newly created members. You cannot override the data set control block (DSCB)
(LRECL); an attempt to do so will result in an error.

• Variable-format records. The LRECL is the maximum record length for logical records that are
contained in members of the PDSE.

• Undefined-format records. The LRECL is the maximum record length for records that are contained
in members of the PDSEs.

MGMTCLAS(management-class-name)
For SMS-managed data sets: This is the 1-to-8 character name of the management class for a new
data set. When possible, do not use MGMTCLAS. Allow it to default through the ACS routines.

After the system allocates the data set, attributes in the management class define the following
items:

ALLOCATE Command

36 z/OS: z/OS DFSMStvs Administration Guide

• The migration of the data set. This includes migration both from primary storage to migration
storage, and from one migration level to another in a hierarchical migration scheme.

• The backup of the data set. This includes frequency of backup, number of versions, and retention
criteria for backup versions.

If SMS is not active, the system checks the syntax and then ignores the MGMTCLAS parameter.

MAXVOL(count)
This is the maximum number (1-255) of volumes upon which a data set can reside. This number
corresponds to the count field on the VOLUME parameter in JCL. Use this to override the volume
count attribute defined in the data class of the data set.

If VOLUME and PRIVATE parameters are not given, and MAXVOL exceeds UCOUNT, the system
removes no volumes when all the mounted volumes have been used, causing abnormal termination of
your job. If PRIVATE is given, the system removes one of the volumes and mounts another volume in
its place to continue processing.

MAXVOL overrides any volume count in the data class (DATACLAS) of the data set.

Your user attribute data set (UADS) must contain the MOUNT attribute. Use of this parameter implies
PRIVATE.

NEW
This creates a data set. For new partitioned data sets, you must use the DIR parameter. If you assign
a data set name, the system keeps and catalogs a NEW data set. If you do not assign a data set name,
the system deletes the data set at step termination.

NCP(number-of-channel-programs)
This gives the maximum number of READ or WRITE macro instructions that are allowed before a
CHECK macro instruction is entered. The number must not exceed 99 and must be less than 99 if a
lower limit was established when the operating system was generated. If you are using chained
scheduling, you must assign an NCP value greater than 1. If you omit the NCP parameter, the default
value is 1.

OPTCD(A,B,C,E,F,H,J,Q,R,T,W,Z)
This lists optional services: (See also the OPTCD subparameter of the DCB parameter in z/OS MVS JCL
Reference for details.)
A

Requires that the actual device addresses be presented in READ and WRITE macro instructions.
B

Requires that the end-of-file (EOF) recognition be disregarded for tapes.
C

Uses chained scheduling.
E

Asks for an extended search for block or available space.
F

Returns device address feedback from a READ or WRITE macro instruction in the form it is
presented to the control program.

H
Requests the system to check for and bypass. For more information, see z/OS MVS JCL Reference.

J
Makes the character after the carriage control character the table reference character for that line.
The table reference character tells TSO/E which character arrangement table to select when
printing the line.

Q
Translates a magnetic tape from ASCII to EBCDIC or from EBCDIC to ASCII.

R
Requires relative block addressing.

ALLOCATE Command

Chapter 2. Administering resources for DFSMStvs 37

T
Requests the user totaling facility.

W
Tells the system to perform a validity check when it writes data on a direct access device.

Z
Asks the control program to shorten its normal error recovery procedure for input on magnetic
tape.

You can use any or all the services by combining the characters in any sequence, separating them
with blanks or commas.

For PDSEs, the system ignores OPTCD values other than OPTCD(J). OPTCD(J) requires that the first
data byte in the output data line is a 3800 table reference character.

POSITION(sequence-number)
This is the relative position (1-9999) of the data set on a multiple data set tape. The sequence number
corresponds to the data set sequence number field of the label parameter in JCL.

PRIVATE
This assigns the private-volume use attribute to a volume that is neither reserved nor permanently in
resident. It corresponds to the PRIVATE keyword of the VOLUME parameter in JCL.

If you do not use VOLUME and PRIVATE parameters and MAXVOL exceeds UCOUNT, the system
removes no volumes when all the mounted volumes have been used, causing abnormal termination of
your job. If you use PRIVATE, the system removes one of the volumes and mounts another volume to
continue processing.

PROTECT
This RACF-protects the DASD data set or the first data set on a tape volume.

• For a new permanent DASD data set, the status must be NEW or MOD, treated as NEW, and the
disposition must be either KEEP, CATALOG, or UNCATALOG. With SMS, SECMODEL overrides
PROTECT.

• For a tape volume, the tape must have an SL, SUL, AL, AUL, or NSL label. The file sequence number
and volume sequence number must be one (except for NSL). You must assign PRIVATE as the tape-
volume use attribute.

The PROTECT parameter is not valid if a data set name is not given, or if the FCB parameter or status
other than NEW or MOD is used.

RECFM(A,B,D,F,M,S,T,U,V)
This sets the format and characteristics of the records in the data set. They must be completely
described by one source only. If they are not available from any source, the default is an undefined-
length record. See also the RECFM subparameter of the DCB parameter in z/OS MVS JCL Reference for
a detailed discussion.

Use these with the RECFM parameter:
A

To show the record contains ASCII printer control characters
B

To indicate the records are blocked
D

For variable length ASCII records
F

For fixed length records.
M

For records with machine code control characters.

ALLOCATE Command

38 z/OS: z/OS DFSMStvs Administration Guide

S
For fixed-length records, the system writes the records as standard blocks (there must be no
truncated blocks or unfilled tracks except for the last block or track). For variable-length records,
a record can span more than one block. Exchange buffering, BFTEK(E), must not be used.

T
The records can be written onto overflow tracks, if required. Exchange buffering, BFTEK(E), or
chained scheduling, OPTCD(C), cannot be used.

U
The records are of undefined length.

V
Shows variable length records.

You must provide one or more values for this parameter.

For PDSEs, these statements apply:

• RECFM can be partially modified from the value that is saved in the DSCB when creating members.
• In a PDSE that is created as fixed or fixed blocked, members must always be created with fixed-
length logical records. However, the attribute of blocked might change between member creates.
The first record format assigned to the PDSE is the default for member creates. The characteristic of
blocked might not change during an open.

• Attempts to overwrite the record format characteristic of F, U, or V with another value from that set
causes a system error.

• RECFM(A) and RECFM(M) are compatible with PDSEs.

RECFM and RECORG are mutually exclusive.

RECORG(ES|KS|LS|RR)
Determines the organization of the records in a new VSAM data set. To override the record
organization defined in the data class (DATACLAS) of the data set, use RECORG.

You can assign:
ES

For a VSAM entry-sequenced data set
KS

For a VSAM key-sequenced data set
LS

For a VSAM linear space data set. You cannot access linear data sets with VSAM record-level
sharing (RLS) or DFSMStvs.

RR
For a VSAM relative record data set

If you do not use RECORG, SMS assumes a non-VSAM data set.

RECORG and RECFM are mutually exclusive. To define the data set organization for a non-VSAM data
set, see DSORG.

Exception: You can use the RECORG parameter to allocate both SMS-managed and non-SMS-
managed data sets. If SMS is not active, however, the system checks the syntax and ignores the
RECORG parameter.

REFDD(dsname)
Specifies the name of an existing data set whose attributes are copied to a new data set. The system
copies these attributes to the new data set:

• Data set organization:

– Record organization (RECORG)
– Record format (RECFM)

• Record length (LRECL)

ALLOCATE Command

Chapter 2. Administering resources for DFSMStvs 39

• Key length (KEYLEN)
• Key offset (KEYOFF)
• Space allocation

– AVGREC
– SPACE

The system does not copy the retention period (RETPD) or expiration date (EXPDT) to the new data
set.

LIKE and REFDD are mutually exclusive.

Exception: You can use the REFDD parameter to allocate both SMS-managed and non-SMS-managed
data sets. If SMS is not active, however, the system checks the syntax and then ignores the REFDD
parameter.

RELEASE
To delete unused space when the data set is closed.

If you use RELEASE for a new data set with the BLOCK or BLKSIZE parameter, then you must also use
the SPACE parameter.

REUSE
Frees and reallocates a data set if it is currently in use.

You cannot use the REUSE parameter to reallocate a data set from a disposition of OLD to a
disposition of SHR. However, you can first free the data set with OLD and then reallocate it with SHR.

ROUND
Allocates space equal to one or more cylinders. Use this parameter only when you request space in
units of blocks. This parameter corresponds to the ROUND parameter of the SPACE parameter in JCL.

SECMODEL(profile-name[,GENERIC])
Names an existing RACF profile to copy to the discrete profile. Use SECMODEL when you want a
different RACF data set profile from the default profile selected by RACF, or when there is no default
profile. The model profile can be any of these profiles:

• RACF model profile
• RACF discrete data set profile
• RACF generic data set profile

Use GENERIC to state the profile name as a generic data set profile.

The system copies this information from the RACF data set profile to the discrete data set profile of
the new data set:

• OWNER indicates the user or group assigned as the owner of the data set profile.
• ID is the access list of users or groups that are authorized to access the data set.
• UACC gives universal access authority that is associated with the data set.
• AUDIT|GLOBALAUDIT selects which access attempts are logged.
• ERASE indicates that the data set when it is deleted (scratched).
• LEVEL is the installation-defined level indicator.
• DATA is installation-defined information.
• WARNING indicates that an unauthorized access causes RACF to issue a warning message, but

allows access to the data set.
• SECLEVEL is the name of an installation-defined security level.

Exception: You can use the SECMODEL parameter to allocate both SMS-managed and non-SMS
managed data sets. If SMS is not active, however, the system checks the syntax and then ignores the
SECMODEL parameter.

ALLOCATE Command

40 z/OS: z/OS DFSMStvs Administration Guide

For more information about RACF, see z/OS Security Server RACF Command Language Reference.

SPACE(quantity[,increment])
Allocates the amount of space for a new data set. If you omit this parameter and:

• You are running MVS/ESA Version 3. The system uses the IBM-supplied default value of
SPACE(10,50) AVBLOCK (1000).

• You are running MVS/ESA SP Version 4. The system uses the IBM-supplied default value of
SPACE(4,24) AVBLOCK (8192).

However, your installation might have changed the default. For more information about default space,
see z/OS MVS Programming: Authorized Assembler Services Guide.

To have the system determine the amount of space, include the AVGREC parameter in place of
BLOCK, AVBLOCK, CYLINDERS, and TRACKS. To supply your own space value, define one of the
following: BLOCK(value), BLKSIZE(value), AVBLOCK(value), CYLINDERS, or TRACKS. The amount of
space requested is determined as follows:

• BLOCK(value) or BLKSIZE(value): The BLOCK or BLKSIZE parameter's value is multiplied by the
SPACE parameter's quantity.

• AVBLOCK(value): The AVBLOCK parameter's value is multiplied by the SPACE parameter's quantity.
• CYLINDERS: The SPACE parameter's quantity is given in cylinders.
• TRACKS: The SPACE parameter's quantity is given in tracks.

Use SPACE for NEW and MOD data sets.
quantity

Allocates the initial number of units of space for a data set. For a partitioned data set, a directory
quantity is not necessary.

increment
This is the number of units of space to be added to the data set each time the previously allocated
space has been filled. You must provide the primary quantity along with the increment value.

BLOCK(value)
Shows the average length (in bytes) of the records written to the data set. The maximum block
value used to determine space to be allocated is 65,535. The block value is the unit of space that
is used by the SPACE parameter. A track or a cylinder on one device can represent a different
amount of storage (number of bytes) from a track or a cylinder on another device. Determine the
unit of space value from the:

• Default value of (10 50) AVBLOCK(1000) if no space parameters (SPACE, AVBLOCK, BLOCK,
CYLINDERS, or TRACKS) are given.

• The BLOCK parameter.
• The model data set, if the LIKE parameter is used and BLOCK, AVBLOCK, CYLINDERS, or

TRACKS is not given.
• The BLKSIZE parameter if BLOCK is not used.

AVBLOCK(value)
This shows only the average length (in bytes) of the records that are written to the data set.

CYLINDERS
Requests allocation in cylinders as the unit of space.

TRACKS
Requests allocation in tracks as the unit of space.

Exception: If you specify tracks for a VSAM data set, the space allocated will be contiguous. For
more information, see z/OS DFSMS Using Data Sets.

ALLOCATE Command

Chapter 2. Administering resources for DFSMStvs 41

STORCLAS(storage-class-name)
For SMS-managed data sets: Gives the 1-to-8-character name of the storage class. When
possible, allow STORCLAS to default through the ACS routines established by your storage
administrator. Attributes assigned through storage class and the ACS routines replace storage
attributes such as UNIT and VOLUME. If SMS is not active, the system checks the syntax and then
ignores the STORCLAS parameter.

TRTCH(C|E|ET|T)
Selects the recording technique for 7-track tape as follows:
C

Data conversion with odd parity and no translation.
E

Even parity with no translation and no conversion.
ET

Even parity and no conversion. BCD to EBCDIC translation when reading, and EBCDIC to BCD
translation when writing.

T
Odd parity and no conversion. BCD to EBCDIC translation when reading, and EBCDIC to BCD
translation when writing.

The TRTCH and KEYLEN parameters are mutually exclusive.

UCOUNT(count)|PARALLEL
Shows device allocation.
UCOUNT(count)

This allocates the maximum number of devices, where count is a value from 1-59.

If you do not use VOLUME and PRIVATE parameters and MAXVOL exceeds UCOUNT, the
system removes no volumes when the mounted volumes have been used, causing abnormal
termination of your job. If you use PRIVATE, the system removes one of the volumes and
mounts another volume in its place to continue processing.

PARALLEL
Mounts one device for each volume given in the VOLUME parameter or in the catalog.

UNIT(type)
Defines the unit type to which a file or data set is to be allocated. You can list an installation-
defined group name, a generic device type, or a specific device address. If you do not supply
volume information (the system retrieves volume and unit information from a catalog), the unit
type that is coded overrides the unit type from the catalog. This condition exists only if the coded
type and class are the same as the cataloged type and class.

For VSAM data sets, use the AFF subparameter carefully. If the cluster components and the data
and its index reside on unlike devices, the results of UNIT=AFF are unpredictable.

When you allocate a new SMS-managed data set, the system ignores the UNIT parameter. The
system determines the UNIT and VOLUME from the storage class associated with the data set.
Use UNIT only if you want to allocate a non-SMS-managed data set to a specific unit type.

If the storage administrator has set up a default unit under SMS regardless of whether the data
set is SMS-managed, you do not have to use UNIT. If you do not, the system determines the
default UNIT for both SMS-managed and non-SMS-managed data sets.

VOLUME(serial-list)
This is the serial number of an eligible direct access volume on which a new data set is to reside or
on which an old data set is located. If you use VOLUME for an old data set, the data set must be on
the specified volume for allocation to take place. If you do not include VOLUME, the system
allocates new data sets to any eligible direct access volume. The UNIT information in your
procedure entry in the user attribute data set (UADS) determines eligibility. You can use up to 255
volume serial numbers.

ALLOCATE Command

42 z/OS: z/OS DFSMStvs Administration Guide

For VSAM data sets, you need to use this subparameter carefully. For more information about DD
parameters to avoid when processing VSAM data sets, see z/OS MVS JCL User's Guide before you
use the VOLUME subparameter REF, volume-sequence-number, or volume-count.

When you allocate new SMS-managed data sets, you can let the ACS routines select the volume
for you. The ACS routines assign your data set to a storage class that contains attributes such as
VOLUME and UNIT. You can allocate your data set to a specific volume only if your storage
administrator has stated GUARANTEED SPACE=YES in the storage class assigned to your data set.
The volume serial numbers you provide might then override the volume serial numbers used by
SMS. If space is not available on the given volume, however, your request is not successful.

Abbreviation: VOL

VSEQ(vol-seq-number)
This locates which volume (1-255) of a multivolume begins data set processing. This parameter
corresponds to the volume sequence number on the VOLUME parameter in JCL. Use VSEQ only
when the data set is a cataloged data set.

ALLOCATE examples

The following scenarios use the ALLOCATE command to perform various functions:

Allocate a data set using SMS class specifications: Example 1

In this example, the ALLOCATE command is used to allocate a new data set. By providing the SMS data
class, management class, and storage class, you can take advantage of the attributes assigned by your
storage administrator through the ACS routines.

Although this example includes DYNAMNBR, it is not required in this example. Because this example
contains two DD statements, you can do up to two allocations. DYNAMNBR is required only when the
number of allocations exceeds the number of DD statements. This example sets DYNAMNBR to 1. This
allows up to three allocations for each DD statement (2) plus DYNAMNBR (1).

//ALLOC JOB ...
 EC PGM=IDCAMS,DYNAMNBR=1
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 ALLOC -
 DSNAME(ALX.ALLOCATE.EXAMP1) -
 NEW CATALOG -
 DATACLAS(STANDARD) -
 STORCLAS(FAST) -
 MGMTCLAS(VSAM)
/*

Because the system syntax checks and ignores SMS classes when SMS is inactive, and because no
overriding attributes are given, this example works only if SMS is active. The parameters are:

• DSNAME states that the name of the data set being allocated is ALX.ALLOCATE.EXAMP1.
• NEW creates a data set.
• CATALOG retains the data set by the system in the catalog after step termination. This is mandatory for

SMS-managed data sets.
• DATACLAS gives an installation-defined name of a data class to be assigned to this new data set. The

data set assumes the RECORG or RECFM, LRECL, KEYLEN, KEYOFF, AVGREC, SPACE, EXPDT or RETPD,
VOLUME, CISIZE, FREESPACE, SHAREOPTIONS, and IMBED or REPLICATE parameters assigned to this
data class by the ACS routines. This parameter is optional. If it is not used, the data set assumes the
default data class assigned by the ACS routines.

• STORCLAS gives an installation-defined name of an SMS storage class to be assigned to this new data
set. This storage class and the ACS routines are used to determine the volume. This parameter is
optional and, if not given, the data set assumes the default storage class assigned by the ACS routines.

• MGMTCLAS is the installation-defined name of an SMS management class to be assigned to this new
data set. The data set assumes the migration and backup criteria assigned to this management class by

ALLOCATE Command

Chapter 2. Administering resources for DFSMStvs 43

the ACS routines. This parameter is optional and, if not given, the data set assumes the default
management class assigned by the ACS routines.

Allocate a VSAM data set using SMS class specifications: Example 2

This example uses the ALLOCATE command to allocate a new data set. Data class is not assigned, and
attributes assigned through the default data class are overridden by explicitly specified parameters. By
providing the SMS management class and storage class, you can take advantage of attributes already
assigned through the ACS routines.

//ALLOC JOB ...
//STEP1 EXEC PGM=IDCAMS,DYNAMNBR=1
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 ALLOC -
 DSNAME(M166575.ALLOC.EXAMPLE) -
 NEW CATALOG -
 SPACE(10,2) -
 AVBLOCK(80) -
 AVGREC(K) -
 LRECL(80) -
 RECORG(ES) -
 STORCLAS(FAST) -
 MGMTCLAS(VSAM)
/*

The parameters are:

• DSNAME states that the name of the data set being allocated is M166575.ALLOC.EXAMPLE.
• NEW creates the data set.
• CATALOG retains the data set by the system in the catalog after step termination. This is mandatory for

SMS-managed data sets.
• The SPACE parameter determines the amount of space to be allocated to the new data set.

– The first amount (10) is the primary allocation. The second amount (2) is the secondary allocation.
– Using AVGREC(K) determines that the amounts defined in the SPACE parameter represent kilobytes

(K) of records. In this example, the primary allocation is 10K or 10240 records and the secondary
allocation is 2K or 2048 records.

– To determine the space allocation in bytes, multiply the number of records by 80, the record length in
LRECL(80). The primary allocation is 819200 bytes. The secondary allocation is 163840 bytes.

• AVBLOCK is the average block length. This example uses an average block length of 80 bytes.
• AVGREC determines whether the quantity in the SPACE parameter represents units, thousands, or

millions of records. "K" indicates that the primary and secondary space quantities are to be multiplied
by 1024 (1 KB).

• LRECL says the logical record length in the data set is 80 bytes.
• RECORG shows entry-sequenced records in the new VSAM data set.
• STORCLAS gives an installation-defined name of an SMS storage class to be assigned to this new data

set. This storage class and the ACS routines are used to determine the volume. This parameter is
optional. If it is not used, the data set assumes the default storage class assigned by the ACS routines.

• MGMTCLAS shows an installation-defined name of an SMS management class to be assigned to this
new data set. The data set assumes the migration and backup criteria assigned to this management
class by the ACS routines. This parameter is optional and, if not given, the data set assumes the default
management class assigned by the ACS routines.

Allocate a new data set: Example 3

This example shows the ALLOCATE command being used to allocate a new data set
XMP.ALLOCATE.EXAMP3.

//ALLOC JOB ...
//STEP1 EXEC PGM=IDCAMS,DYNAMNBR=1
//SYSPRINT DD SYSOUT=A

ALLOCATE Command

44 z/OS: z/OS DFSMStvs Administration Guide

//SYSIN DD *
 ALLOC -
 DSNAME(XMP.ALLOCATE.EXAMP3) -
 NEW CATALOG -
 SPACE(10,5) TRACKS -
 BLKSIZE(1000) -
 LRECL(100) -
 DSORG(PS) -
 UNIT(3380) -
 VOL(338002) -
 RECFM(F,B)
/*

The parameters are:

• DSNAME states that the name of the data set to be allocated is XMP.ALLOCATE.EXAMP3.
• NEW creates the data set.
• CATALOG retains the data set in the catalog after step termination.
• SPACE allocates the amount of space to the new data set. In this example, TRACKS is also used so the

primary space is 10 tracks with an increment of 5 tracks.
• BLKSIZE requires that the data set control block (DCB) block size is 1000.
• LRECL sets the length of a logical record in the data set to 100.
• DSORG makes the data set physical sequential (PS).
• UNIT and VOL indicate that the data set is to reside on 3380 volume 338002.
• RECFM shows fixed block records in the data set.

Allocate a non-VSAM data set: Example 4

This example shows the ALLOCATE command being used to allocate a non-VSAM data set. ALLOCATE,
unlike DEFINE NONVSAM, lets you give the SMS classes for a non-VSAM data set.

//ALLOC JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSABEND DD SYSOUT=A
 /SYSIN DD *
 ALLOC -
 DSNAME(NONVSAM.EXAMPLE) -
 NEW -
 DATACLAS(PS000000) -
 MGMTCLAS(S1P01M01) -
 STORCLAS(S1P01S01)
/*

The parameters are:

• DSNAME specifies that the name of the data set to be allocated is NONVSAM.EXAMPLE.
• NEW creates the data set does.is
• DATACLAS assigns an installation-defined name (PS000000) of a data class to this new data set. This

parameter is optional and, if not used, the data set assumes the default data class assigned by the ACS
routines.

• MGMTCLAS assigns an installation-defined name (S1P01M01) of a management class to this new data
set. The data set assumes the migration and backup criteria assigned to this management class by the
ACS routines. This parameter is optional and, if not used, the data set assumes the default management
class assigned by the ACS routines.

• STORCLAS assigns an installation-defined name (S1P01S01) of a storage class to this new data set.
This storage class and the ACS routines determine the volume. This parameter is optional and, if not
used, the data set assumes the default storage class assigned by the ACS routines.

Allocate a partitioned data set extended: Example 5

This example shows the ALLOCATE command being used with the DSNTYPE keyword to allocate a PDSE.

ALLOCATE Command

Chapter 2. Administering resources for DFSMStvs 45

 //ALLOC EXEC PGM=IDCAMS,DYNAMNBR=1
 //SYSPRINT DD SYSOUT=A
 //SYSIN DD *
 ALLOC -
 DSNAME(XMP.ALLOCATE.EXAMPLE1) -
 NEW -
 STORCLAS(SC06) -
 MGMTCLAS(MC06) -
 DSNTYPE(LIBRARY)
 /*

The parameters follow:

• DSNAME specifies that the name of the data set to be allocated is XMP.ALLOCATE.EXAMPLE1.
• NEW creates the data set.
• STORCLAS uses the SC06 storage class definition for this data set.
• MGMTCLAS uses the SC06 management class definition for this data set.
• DSNTYPE(LIBRARY) indicates that the object being allocated is an SMS-managed PDSE.

Listing and controlling SMSVSAM recovery
Use the SHCDS command to list SMSVSAM recovery associated with subsystems and spheres and to
control that recovery. This command works both in batch and in the TSO/E foreground. The functions
include the following subcommands:

• List subcommands
• Subcommands that enable you to take action on work that was shunted
• Subcommands to control a manual forward recovery in the absence of a forward recovery utility that

supports SMSVSAM protocols
• Subcommands that enable you to run critical non-RLS batch window work when it is not possible to first

close out all outstanding SMSVSAM recovery
• A subcommand that allows for a subsystem cold start

Recommendation: After a cold start, if recovery was not completed for any data sets, they are most
likely left in a damaged state and must be recovered manually. If the data sets are forward recoverable,
their forward recovery logs might also be damaged. Manually recover the data sets (without using
forward recovery), take backups of them and of any other data sets that use the forward recovery log,
and then delete and redefine the forward recovery log.

Use this command cautiously. CICS Transaction Server for z/OS (www.ibm.com/support/
knowledgecenter/SSGMGV/welcome.html) describes many of the situations that require the use of the
SHCDS command. For details about administering VSAM RLS, see z/OS DFSMSdfp Storage Administration.

The syntax of the access method services SHCDS command follows.

This table shows the syntax of the access method services SHCDS command.

Command Parameters

SHCDS {[LISTDS(base-cluster)[JOBS]]|

[LISTSHUNTED{SPHERE(base-cluster)|URID({urid|ALL})}]|

[LISTSUBSYS(subsystem|ALL)]|

[LISTSUBSYSDS(subsystem|ALL)]|

[LISTRECOVERY(base-cluster)|

[LISTALL]|

[FRSETRR(base-cluster)]|

SHCDS command

46 z/OS: z/OS DFSMStvs Administration Guide

http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html

This table shows the syntax of the access method services SHCDS command. (continued)

Command Parameters

[FRUNBIND(base-cluster)]|

[FRBIND(base-cluster)]|

[FRRESETRR(base-cluster)]|

[FRDELETEUNBOUNDLOCKS(base-cluster)]|

[PERMITNONRLSUPDATE(base-cluster)]|

[DENYNONRLSUPDATE(base-cluster)]|

[REMOVESUBSYS(subsystem)]|

[CFREPAIR({INFILE(ddname)|INDATASET(dsname)}

 [({LIST|NOLIST})]]|

[CFRESET({INFILE(ddname)|INDATASET(dsname)}]

 [({LIST|NOLIST})]]|

[CFRESETDS(base-cluster)]}

[PURGE{SPHERE(base-cluster)|URID(urid)}]|

[RETRY{SPHERE(base-cluster)|URID(urid)}]|

[OUTFILE(ddname)]

Base-cluster is a fully or partially qualified VSAM data set name. The high-level qualifier must be
specified. You can use an asterisk (*) for a subsequent qualifier, but then no lower-level qualifiers are
allowed. For example, this is allowed:

A.*

This is not allowed:

A.*.B

Subsystem is the name of an online system, such as CICS, as registered to the SMSVSAM server.

Requirements:

1. Various levels of authority are required to use the SHCDS parameters. For more information, see z/OS
DFSMS Access Method Services Commands.

2. A program that calls the SHCDS command must be APF-authorized. For more information, see z/OS
DFSMS Access Method Services Commands.

3. To use the SHCDS command in the TSO foreground, you must add SHCDS to the authorized command
list (AUTHCMD) in the IKJTSOxx member of SYS1.PARMLIB or to the CSECT IKJEGSCU. For more
information, see z/OS DFSMS Access Method Services Commands and z/OS TSO/E Customization.

4. For examples and explanations of the output from the list parameters, see z/OS DFSMS Access Method
Services Commands.

SHCDS parameters

The SHCDS parameters provide for these tasks:

• Listing information kept by the SMSVSAM server and the catalog as related to VSAM RLS or DFSMStvs.

– LISTDS
– LISTSUBSYS

SHCDS command

Chapter 2. Administering resources for DFSMStvs 47

– LISTSUBSYSDS
– LISTRECOVERY
– LISTALL
– LISTSHUNTED

• Controlling forward recovery, preserving retained locks when a data set is moved or copied, and, in rare
cases when forward recovery fails, deleting the locks.

– FRSETRR
– FRUNBIND
– FRBIND
– FRRESETRR
– FRDELETEUNBOUNDLOCKS

• Allowing non-RLS updates when forward recovery is required.

– PERMITNONRLSUPDATE
– DENYNONRLSUPDATE

• Removing the SMSVSAM server's knowledge of an inactive subsystem, thus forcing a cold start of the
online application. Use REMOVESUBSYS only when procedures provided by the application have failed
or you have no intention of ever using the subsystem again.

• REMOVESUBSYS
• Resetting VSAM RLS indicators in the catalog, allowing reconstruction of RLS information or fallback

from VSAM RLS. (For the fallback procedure, see z/OS DFSMSdfp Storage Administration.)

– CFREPAIR
– CFRESET
– CFRESETDS

• Taking action on work that DFSMStvs has shunted. Units of recovery are shunted when DFSMStvs is
unable to finish processing them, for example, due to an I/O error. For each shunted log entry that
exists, the locks associated with that entry are retained.

– RETRY
– PURGE

Required parameters

SHCDS has no required parameters, but you must specify one of the optional parameters. OUTFILE is a
second optional parameter you can specify.

Optional parameters
LISTDS(base-cluster) [JOBS]

Lists the following information:

• The assigned coupling facility cache structure name
• The subsystem type and status:

– Active for batch
– Active or failed for online

• Whether the VSAM sphere is recoverable or nonrecoverable
• The state of the data set:

– Forward recovery required
– Retained locks
– Lost locks

SHCDS command

48 z/OS: z/OS DFSMStvs Administration Guide

– Locks unbound
– Non-RLS update permitted
– Permit-first-time switch

JOBS
When this keyword is specified, LISTDS returns a list of the jobs currently accessing the data set in
DFSMStvs mode.

Abbreviation: LDS

LISTSHUNTED {SPHERE(base-cluster) | URID}(urid|ALL) }}
Lists information about work that was shunted due to an inability to complete a syncpoint (commit or
backout) for a given data set or unit of recovery, or for all shunted units of recovery when the ALL
keyword is specified. The output includes the following information:

• The unit of recovery identifier
• The data set name
• The job with which the unit of recovery was associated
• The step within the job with which the unit of recovery was associated
• Whether the unit of recovery will be committed or backed out if it is retried

One of the following errors can cause shunting:

• C-FAILED: A commit failed.
• B-FAILED: A backout failed.
• IO-ERROR: An I/O error occurred on the data set.
• DS-FULL: The data set was full; no space on DASD to add records.
• IX-FULL: A larger alternate index is required.
• LOCK: A failure occurred during an attempt to obtain a lock during backout.
• LOG: A log stream became or was made unavailable.
• CACHE: A cache structure or connection to it failed.

This parameter requires that you have UPDATE authority to the data set specified.

Abbreviation: LSH

LISTSUBSYS(subsystem|ALL)
lists information about a specific subsystem or all subsystems known to the SMSVSAM server:

• Subsystem status

– Active for batch
– Active or failed for online

• A summary showing whether the subsystem's shared data sets have:

– Lost locks
– Retained locks
– Non-RLS update permitted

For an active subsystem, LISTSUBSYS gives the number of held locks, waiting lock requests, and
retained locks. For a failed subsystem, LISTSUBSYS shows the number of retained locks.

Abbreviation: LSS

LISTSUBSYSDS(subsystem|ALL)
Lists information about a specific subsystem or all subsystems known to the SMSVSAM server,
including data sets that it is sharing. For each subsystem, this parameter lists the following
information:

• Sharing protocol (online or batch)

SHCDS command

Chapter 2. Administering resources for DFSMStvs 49

• The status (active or failed)
• Recovery information for each shared data set:

– Whether it has retained locks owned by this subsystem
– Whether it has lost locks owned by this subsystem
– Whether there are locks not bound to the data set
– If forward recovery is required
– If non-RLS update is permitted
– The permit-first-time switch setting

Abbreviation: LSSDSL

LISTRECOVERY(base-cluster)
lists data sets requiring recovery and the subsystems that share those data sets. Recovery indicators
listed are:

• Lost locks
• Retained locks
• Non-RLS update permitted
• Forward recovery required

Abbreviation: LRCVY

LISTALL
Lists all information related to recovery for subsystems and VSAM spheres accessed in RLS mode. The
output from this parameter can be quite large.

Abbreviation: LALL

FRSETRR(base-cluster)
This parameter sets the forward-recovery-required indicator. Until reset with the FRRESETRR
parameter, access is prevented until forward recovery is complete.

If you use a forward recovery utility that supports RLS, such as CICSVR, do not use this parameter.

Abbreviation: SETRR

FRUNBIND(base-cluster)
This parameter unbinds the retained locks prior to restoring or moving the data set. These locks
protect uncommitted changes and are needed for eventual backout. They must be rebound by using
the FRBIND parameter.

If you use a forward recovery utility that supports RLS, such as CICSVR, do not use this parameter.

Abbreviation: UNB

FRBIND(base-cluster)
Use this parameter after BLDINDEX to rebind the associated locks to the restored data set.

Attention: Between the unbind and the bind, do not delete any clusters in the sphere or change their
names.

If you use a forward recovery utility that supports RLS, such as CICSVR, do not use this parameter.

Abbreviation: BIND

FRRESETRR(base-cluster)
Use this parameter after forward recovery is complete and after locks have been bound to the new
location of the data set using FRBIND. This allows access to the newly recovered data set by
applications other than the forward recovery application.

If you use a forward recovery utility that supports RLS, such as CICSVR, do not use this parameter.

Abbreviation: RESET

SHCDS command

50 z/OS: z/OS DFSMStvs Administration Guide

FRDELETEUNBOUNDLOCKS(base-cluster)
The FRDELETEUNBOUNDLOCKS parameter lets you delete locks in the rare case when a successful
forward recovery is not possible. Every attempt should be made to complete forward recovery,
whether using a product such as CICSVR that supports VSAM RLS or using another forward recovery
procedure.

If forward recovery does not successfully complete, locks cannot be reassociated (bound) to the new
version of the data set, because these locks do not provide the protection that online backout
requires.

Before using this parameter, check the documentation for your online application. For CICS, the
procedure is documented in CICS Transaction Server for z/OS (www.ibm.com/support/
knowledgecenter/SSGMGV/welcome.html).

Abbreviation: DUNBL

PERMITNONRLSUPDATE(base-cluster)
Allows a data set with pending RLS recovery to be opened for output in non-RLS mode. This command
is used when it is necessary to run critical batch updates and RLS recovery cannot first be completed.
This is reset the next time the data set is accessed for RLS. If after using PERMITNONRLSUPDATE,
you do not run a non-RLS batch job, you must use DENYNONRLSUPDATE to prevent non-RLS updates.

Abbreviation: PERMT

DENYNONRLSUPDATE(base-cluster)
If you inadvertently issue PERMITNONRLSUPDATE, use this parameter to reset the effect of
PERMITNONRLSUPDATE.

If recovery was pending, but you did not run a non-RLS batch job, you must use this parameter. If not
reset, CICS takes action assuming the data set has been opened for update in non-RLS mode.

Do not use DENYNONRLSUPDATE if you do indeed run non-RLS work after specifying
PERMITNONRLSUPDATE. The permit status is reset the next time the data set is opened in RLS mode.

Abbreviation: DENY

REMOVESUBSYS(subsystem)
Use this parameter to remove any knowledge of recovery owed to SMSVSAM by the named
subsystem, including locks protecting uncommitted updates.

Normally, a failed online application would be restarted so that it can do the required backouts and
release locks that protect uncommitted updates. However, sometimes it might be necessary to cold
start the online application. For more information about cold starts, see CICS Transaction Server for
z/OS (www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html).

Use of this parameter is equivalent to cold starting the named subsystem with respect to the
SMSVSAM server. Use REMOVESUBSYS for the rare cases where either there is no intention of ever
running the subsystem again or the application's cold start procedures cannot be used. An example of
an appropriate use of REMOVESUBSYS would be removing a test system that is no longer needed.

If the removed subsystem is ever run again, every effort should be made to cold start the subsystem.

Attention: Use of REMOVESUBSYS can result in loss of data integrity.

Abbreviation: RSS

CFREPAIR({INFILE(ddname) | INDATASET(dsname)})
Use this command to reconstruct the RLS indicators for all applicable data sets in a restored catalog.
CFREPAIR uses information known to the VSAM RLS server at the time the SHCDS command is used.
The catalog must be import-connected on all systems to the master catalog before the CFREPAIR
parameter can be used.
INFILE(ddname)

Indicates which DD statement defines the catalog to be processed.
INDATASET(dsname)

Use this to specify the name of the catalog to be processed.

SHCDS command

Chapter 2. Administering resources for DFSMStvs 51

http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html

({LIST|NOLIST})
Optional subparameters, which control the information returned by the CFREPAIR parameter.
LIST

Requests a list of data sets for which CFREPAIR successfully restored the RLS information. If
you do not specify this subparameter, CFREPAIR lists only those data sets whose RLS
information could not be restored.

NOLIST
Only data sets whose information could not be restored are listed. Using this subparameter is
the same as not specifying LIST or NOLIST.

Abbreviation: CFREP

CFRESET({INFILE(ddname)|INDATASET(dsname)}
Use this parameter if you've decided to fall back from using VSAM RLS. It clears VSAM RLS indicators
in the catalog for all applicable data sets. z/OS DFSMSdfp Storage Administration includes a detailed
fallback procedure. Also, for information specific to CICS, see CICS Transaction Server for z/OS
(www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html).

If the catalog is later restored, use CFREPAIR to reconstruct critical information required by the
SMSVSAM server.
INFILE(ddname)

Specifies the data definition (DD) name of the catalog to be processed.
INDATASET(dsname)

Specifies the data set name of the catalog to be processed.
({LIST|NOLIST})

Optional subparameters, which control the information returned by the CFRESET parameter.
LIST

Requests a list of data sets for which CFRESET successfully processed the RLS indicators. If
you do not specify this subparameter, CFRESET lists only those data sets whose indicators
were not cleared.

NOLIST
Only data sets that were not successfully processed are listed. Using this subparameter is the
same as not specifying LIST or NOLIST.

Abbreviation: CFRES

CFRESETDS(base-cluster)
Use this parameter if you've decided to fall back from using VSAM RLS. It clears VSAM RLS indicators
in the catalog for all applicable data sets. CFRESETDS This parameter differs from CFRESET in that it
lets you select one or more data sets for fallback. CFRESETDS lists all data sets processed, not just
those with errors.

A detailed fallback procedure is included in z/OS DFSMSdfp Storage Administration. Also, for
information specific to CICS, see CICS Transaction Server for z/OS (www.ibm.com/support/
knowledgecenter/SSGMGV/welcome.html).

Abbreviation: CFRDS

PURGE {SPHERE(base-cluster)|URID(urid)}
Discards the log entries and releases the associated locks. Use this command when the data set is
damaged and cannot be restored to a state where it is consistent with the log entries. For example, it
might have been necessary to restore the data set from a backup copy that predates the updates that
were made to the data set prior to the failure.

Recommendation: If any data sets are in a lost locks status, do not issue this command while a
DFSMStvs restart is in progress. If any lost locks recovery was not completed for a data set that is
being processed by this command, the command does not complete until the DFSMStvs restart
completes.

This parameter requires that you have update authority for the specified data set.

SHCDS command

52 z/OS: z/OS DFSMStvs Administration Guide

http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html

Abbreviation: none

RETRY {SPHERE(base-cluster)|URID(urid)}
Retries the syncpoint. Use this command when the data set can be restored to a state where it is
consistent with the log entries. By consistent, we mean that the data set reflects the state that existed
before the time of the particular unit of recovery for which DFSMStvs was unable to complete
processing. This is possible for data sets that are forward recoverable or for failures that do not
damage the data set (such as a dropped path). When the command completes successfully, locks
associated with the log entries are released.

Recommendation: If any data sets are in a lost locks status, do not issue this command while a
DFSMStvs restart is in progress. If any lost locks recovery was not completed for a data set that is
being processed by this command, the command does not complete until the DFSMStvs restart
completes.

This parameter requires that you have update authority for the specified data set.

Abbreviation: none

OUTFILE(ddname)
Specifies a data set, other than the SYSPRINT data set, to receive the output produced by the SHCDS
command.

The value of ddname identifies the DD statement of the alternate target data set.

Abbreviation: OUTDD

SCHDS examples

The following examples show functions that the SCHDS command can perform.

Using PERMITNONRLSUPDATE with a generic data set name specification: Example 1

The following example shows using the SHCDS subparameter PERMITNONRLSUPDATE with a generic
data set name specification.

 /* SET NONRLS UPDATE ON */
 SHCDS PERMITNONRLSUPDATE(SYSPLEX.PERMIT.*)
 IDC2917I NO RACF PROFILE ON STGADMIN.IGWSHCDS.REPAIR
 IDC01885I NON-RLS UPDATE PERMITTED FOR SYSPLEX.PERMIT.CLUS2
 IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

Listing data sets with the high-level qualifier SYSPLEX: Example 2

The following example lists the data sets with the high-level qualifier of SYSPLEX.

In general, when a base cluster name can be specified for the SHCDS command, a generic can be used.

 SHCDS LISTDS(SYSPLEX.*)
 IDC2917I NO RACF PROFILE ON STGADMIN.IGWSHCDS.REPAIR
 ----- LISTING FROM SHCDS ----- IDCSH02

 DATA SET NAME----SYSPLEX.PERMIT.CLUS2
 CACHE STRUCTURE----CACHE01
 RETAINED LOCKS---------YES NON-RLS UPDATE PERMITTED--------YES
 LOST LOCKS--------------NO PERMIT FIRST TIME---------------YES
 LOCKS NOT BOUND---------NO FORWARD RECOVERY REQUIRED--------NO
 RECOVERABLE------------YES

 SHARING SUBSYSTEM STATUS
 SUBSYSTEM SUBSYSTEM RETAINED LOST NON-RLS UPDATE
 NAME STATUS LOCKS LOCKS PERMITTED
 --------- -------------- -------- ----- --------------
 RETLK05A ONLINE--FAILED YES NO YES
 DATA SET NAME----SYSPLEX.RETAINED.CLUS1
 CACHE STRUCTURE----CACHE01
 RETAINED LOCKS---------YES NON-RLS UPDATE PERMITTED---------NO
 LOST LOCKS--------------NO PERMIT FIRST TIME----------------NO
 LOCKS NOT BOUND---------NO FORWARD RECOVERY REQUIRED--------NO
 RECOVERABLE------------YES

SHCDS command

Chapter 2. Administering resources for DFSMStvs 53

 SHARING SUBSYSTEM STATUS
 SUBSYSTEM SUBSYSTEM RETAINED LOST NON-RLS UPDATE
 NAME STATUS LOCKS LOCKS PERMITTED
 --------- -------------- -------- ----- --------------
 RETLK05A ONLINE--FAILED YES NO NO
 DATA SET NAME----SYSPLEX.SHARED.CLUS4
 CACHE STRUCTURE----CACHE01
 RETAINED LOCKS---------YES NON-RLS UPDATE PERMITTED---------NO
 LOST LOCKS--------------NO PERMIT FIRST TIME----------------NO
 LOCKS NOT BOUND---------NO FORWARD RECOVERY REQUIRED--------NO
 RECOVERABLE------------YES

 SHARING SUBSYSTEM STATUS
 SUBSYSTEM SUBSYSTEM RETAINED LOST NON-RLS UPDATE
 NAME STATUS LOCKS LOCKS PERMITTED
 --------- -------------- -------- ----- --------------
 RETLK05A ONLINE--FAILED YES NO NO
 IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

Listing data sets with JOBS: Example 3

The following example shows an SHCDS LISTDS command for a data set with no retained locks. The data
set is currently in use by 10 jobs accessing it in DFSMStvs mode.

 SHCDS LISTDS(SYSPLEX.KSDS.RETAINED.CLUS1) JOBS
 ----- LISTING FROM SHCDS ----- IDCSH02
 --
 DATA SET NAME----SYSPLEX.KSDS.RETAINED.CLUS1
 CACHE STRUCTURE----CACHE01
 RETAINED LOCKS----------NO NON-RLS UPDATE PERMITTED---------NO
 LOST LOCKS--------------NO PERMIT FIRST TIME----------------NO
 LOCKS NOT BOUND---------NO FORWARD RECOVERY REQUIRED--------NO
 RECOVERABLE------------YES
 SHARING SUBSYSTEM STATUS
 SUBSYSTEM SUBSYSTEM RETAINED LOST NON-RLS UPDATE
 NAME STATUS LOCKS LOCKS PERMITTED
 --------- -------------- -------- ----- --------------
 RETLK05A ONLINE--ACTIVE YES NO NO
 JOB NAMES:

 TRANV001 TRANV002 TRANV003 TRANV004 TRANV005
 TRANJOB1 TRANJOB2 TRANJOB3 TRANJOB4 TRANJOB5
 IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

Listing shunted entries: Example 4

The following example lists information for each shunted entry.

SHCDS LISTSHUNTED SPHERE(SYSPLEX.KSDS.CLUSTER.NAME)
 --
 CLUSTER NAME----SYSPLEX.KSDS.CLUSTER.NAME
 URID DISPOSITION JOB NAME STEP NAME CAUSE
 ---------------- ----------- -------- --------- -----
 ABCDEFGH00000001 BACKOUT TRANJOB1 TRANSTP3 B-FAILED
 XYZ@#$0000000000 BACKOUT TRANJOB2 STPTRAN1 IO-ERROR
 0101BF$$22222222 COMMIT TRANV001 TRANSTP1 C-FAILED
 IDC0001I FUNCTION COMPLETED, HIGHEST CONDITION CODE WAS 0

Altering data set attributes
The ALTER command modifies the attributes of defined data sets and catalogs.

The syntax of the ALTER command follows.

This table shows the syntax of the ALTER command.

Command Parameters

ALTER entryname

[ACCOUNT(account–info)]

[ADDVOLUMES(volser[volser...])]

ALTER command

54 z/OS: z/OS DFSMStvs Administration Guide

This table shows the syntax of the ALTER command. (continued)

Command Parameters

[BUFFERSPACE(size)]

[BUFND(number)]

[BUFNI(number)]

[BWO(TYPECICS|TYPEIMS|NO)]

[CCSID(value)]

[CODE(code)]

[ECSHARING|NOECSHARING]

[EMPTY|NOEMPTY]

[ERASE|NOERASE]

[EXCEPTIONEXIT(entrypoint)]

[FILE(ddname)]

[FILEDATA(TEXT|BINARY)]

[FREESPACE(CI-percent[CA-percent])]

[FRLOG(NONE[REDO])]

[INHIBIT|UNINHIBIT]

[KEYS(length offset)]

[LIMIT(limit)]

[LOCK|UNLOCK]

[LOG(NONE|UNDO|ALL)]

[LOGSTREAMID(logstream)]

[MANAGEMENTCLASS(class)]

[NEWNAME(newname)]

[NULLIFY(

 [AUTHORIZATION(MODULE|STRING)]

 [BWO]

 [CODE]

 [EXCEPTIONEXIT]

 [LOG]

 [LOGSTREAMID]

 [OWNER]

 [RETENTION]

[OWNER(ownerid)]

[RECORDSIZE(average maximum)]

[REMOVEVOLUMES(volser[volser...])]

[REUSE|NOREUSE]

[ROLLIN]

ALTER command

Chapter 2. Administering resources for DFSMStvs 55

This table shows the syntax of the ALTER command. (continued)

Command Parameters

[SCRATCH|NOSCRATCH]

[SHAREOPTIONS(crossregion[crosssystem])]

[STORAGECLASS(class)]

[STRNO(number)]

[TO(date)|FOR(days)]

[TYPE(LINEAR)]

[UNIQUEKEY|NONUNIQUEKEY]

[UPDATE|NOUPDATE]

[UPGRADE|NOUPGRADE]

[WRITECHECK|NOWRITECHECK]

[CATALOG(catname)]

Entry types that can be altered

An "X" in Figure 4 on page 57 indicates that you can alter the value or attribute for the type of catalog
entry that is shown. Some attributes apply only to either the data component or the index component of a
cluster or alternate index entry. You can use some attributes only for the data or index component of a
cluster or alternate index entry; you must then identify the entryname of the component. Use the LISTCAT
command to determine the names generated for the object's components.

You can identify a group of entries with a generic name. Entrynames that match the supplied qualifiers
are altered if they have the information that is used with the ALTER command.

You cannot alter alias entries or a master catalog's self-describing entries, nor can you change a fixed-
length relative record data set to a variable-length relative record data set, or the reverse. You cannot
change a linear data set (LDS) to any other VSAM data set format. Any attempt to alter a data set defined
with a device type named by the user (for example, SYSDA) is unsuccessful.

When the data set characteristics being altered are for a compressed data set, the maximum record
length of the control interval size is less than if compression is not done.

ALTER command

56 z/OS: z/OS DFSMStvs Administration Guide

SAVE AREA TRACE

DGTFMD01 WAS ENTERED VIA LINK AT EP DGTFMD01..90.349
SA 0002EFD8 WD1 000000D0 HSA 0002E818 LSA 05301C50 RET 80FD2C38 EPA 8538C630 R0 03178AEC
 R1 0002F084 R2 0002EB84 R3 FFFFFFFF R4 0002EB84 R5 0002A4D0 R6 00000000
 R7 00000001 R8 0002EB80 R9 00029740 R10 00000000 R11 00000000 R12 83178790
DGTFMD01 WAS ENTERED VIA CALL AT EP DGTFMD05..90.349
SA 05301C50 WD1 00000000 HSA 0002EFD8 LSA 053018E0 RET 8538C832 EPA 8538DA38 R0 03178AEC
 R1 05301D70 R2 0000000C R3 00000048 R4 05301F54 R5 05301E74 R6 00000000
 R7 00000000 R8 8002EB9A R9 00029 740 R10 0539213C R11 05301C50 R12 8538C630
UNKNOWN WAS ENTERED VIA CALL AT EP ISPDIR.912 17
SA 00030AC0 WD1 000004C0 HSA 00030300 LSA 0003C010 RET 831708A6 EPA 8316ABC8 R0 00000000
 R1 00030B10 R2 00030E80 R3 000301B8 R4 000000FE R5 00017C14 R6 00015218
 R7 00030668 R8 00030D60 R9 00029740 R10 00030DD8 R11 00000000 R12 83170018
UNKNOWN WAS ENTERED VIA CALL AT EP ISPDIL.92014.OY51175.3.3
SA 0003C010 WD1 000007C0 HSA 00030AC0 LSA 0003C7D0 RET 8316B89A EPA 83178790 R0 05300FCC
 R1 0003C0E0 R2 00000000 R3 00000000 R4 00017000 R5 00017000 R6 00015218
 R7 0003C378 R8 0316DBC8 R9 00029740 R10 0316CBC8 R11 0316BBC8 R12 8316ABC8
DGTFVA00 WAS ENTERED VIA LINK
SA 0003C7D0 WD1 000000D0 HSA 0003C010 LSA 05301638 RET 80FD2C38 EPA 853AA7A0 R0 03178AEC
 R1 0003C87C R2 0003C37C R3 FFFFFFFF R4 0003C37C R5 0002A4D0 R6 00000000
 R7 00000001 R8 0003C378 R9 00029740 R10 00000000 R11 00000000 R12 83178790
DGTFVA00 WAS ENTERED VIA CALL AT EP DGTFVA11..91.221
SA 053966F4 WD1 00000000 HSA 05301638 LSA 053B90BC RET 853AB422 EPA 8539FCB0 R0 00000000
 R1 05396A20 R2 00000001 R3 00000000 R4 0003C37C R5 0002A4D0 R6 00000000
 R7 00000001 R8 05396DB8 R9 053AC03D R10 0539213C R11 053966F4 R12 853AB03E
DGTFMD01 WAS ENTERED VIA CALL AT EP DGTFCTPR..91.227
SA 053E80A4 WD1 00000000 HSA 053EA4E4 LSA 053E305C RET 853FFB5A EPA 0533F540 R0 053E83F4
 R1 053E827C R2 053E8404 R3 0005BCD9 R4 053F3E80 R5 053EA874 R6 0005B832
 R7 0005A833 R8 053010CC R9 053F3145 R10 0539213C R11 053E80A4 R12 853FF476

Figure 4. ALTER attributes that can be altered and types of catalog entries

ALTER parameters

Required parameters

The ALTER command takes the following required and optional parameters.

entryname
This names the entry to be altered.

When attributes of a catalog are altered, entryname must include either the data or index
components. Giving the catalog name alters attributes defined at the cluster level only. The catalog
name is also the data component name.

The restricted prefix SYS1.VVDS.V or its generic form SYS1.VVDS.* or SYS1.*.V is not allowed as an
entryname for the ALTER command.

If you are renaming a member of a non-VSAM partitioned data set, the entryname must given as:
pdsname(membername).

ALTER command

Chapter 2. Administering resources for DFSMStvs 57

See the NEWNAME parameter for information on renaming SMS-managed data sets.

You identify a general data stream (GDS) with its GDG name followed by the generation and version
numbers of the data set (GDGname.GxxxxVyy). You cannot use relative generation numbers (that is,
GDGname(+1)) with the entryname

Optional parameters

ACCOUNT(account–info)
Account is supported only for SMS-managed VSAM data sets or non-VSAM data sets.
account–info

Use this to change accounting information and user data for the data set. It must be between 1
and 32 bytes, otherwise you will receive an error message.

Abbreviation: ACCT

ADDVOLUMES(volser [volser])
This provides the volumes to be added to the list of candidate volumes. You can use ALTER
ADDVOLUMES to add candidate volumes to non-managed VSAM data sets and SMS-managed VSAM,
non-VSAM, and general data stream (GDS) data sets. Only nonspecific volumes can be added to SMS-
managed, non-VSAM data sets and GDS data sets. If an ALTER ADDVOLUMES is done to a data set
already opened and allocated, the data set must be closed, unallocated, reallocated, and reopened
before VSAM can extend onto the newly added candidate volume. Adding a nonexistent volume to the
list can result in an error when the data set is extended. Ensure that the volume exists and is on-line
before attempting to extend the data set.

Restriction: This does not work with NONSMS NONVSAM

SMS might not use candidate volumes for which you request specific volsers with the ADDVOLUMES
parameter. Sometimes a user-specified volser for an SMS-managed data set results in an error. To
avoid candidate-volume problems with SMS, you can have SMS choose the volser used for a
candidate volume. To do this, you can code an * for each volser that you request with the
ADDVOLUMES parameter. If, however, you request both specified and unspecified volsers in the same
command, you must enter the specified volsers first in the command syntax. The system does not
allocate space on candidate volumes until VSAM extends to the candidate volume. This includes SMS-
managed data sets with guaranteed space.

Abbreviation: AVOL

BUFFERSPACE(size)
Provides the amount of space for buffers. The size you specify for the buffer space helps VSAM
determine the size. IBM recommends that the size you give is equal to or greater than the amount
specified in the original definition. If the amount is less, VSAM attempts to get enough space to
contain two data component control intervals and, if the data is key-sequenced, one index component
control interval. You can specify BUFFERSPACE only for a catalog or for the data component of a
cluster or alternate index. If you use BUFFERSPACE for a catalog, then you must specify the CATALOG
parameter.

The BUFFERSPACE parameter is ignored for VSAM RLS and DFSMStvs access.
size

is the amount of space for buffers. This helps VSAM determine the size of the data component's
and index component's control interval.

Size can be entered in decimal (n), hexadecimal (X'n'), or binary (B'n') form, but must not exceed
16,776,704. The specified size should not be less than the space needed to contain two data
component control intervals and, if the data is key-sequenced, to contain one index control
interval. If the given size is less than what VSAM requires, it gets it when the data set is opened.

Abbreviations BUFSP or BUFSPC

ALTER command

58 z/OS: z/OS DFSMStvs Administration Guide

BUFND(number)
Gives the number of I/O buffers VSAM is to use for transmitting data between virtual and auxiliary
storage. The size of the buffer area is the size of the data component control interval. Use this
parameter only to alter the data component of an integrated catalog facility catalog.

The BUFND parameter is ignored for VSAM RLS and DFSMStvs access.
number

is the number of data buffers you can use. The minimum number is 3, and the maximum is 255.

Abbreviation: BFND

BUFNI(number)
Is the number of I/O buffers VSAM uses for transmitting the contents of index entries between virtual
and auxiliary storage for keyed access. The size of the buffer area is the size of the index control
intervals. Use this parameter only to alter the index component of the integrated catalog facility
catalog.

The BUFNI parameter is ignored for VSAM RLS and DFSMStvs access.
number

Is the number of index buffers you can use. The minimum number is 2 and the maximum is 255.

Abbreviation: BFNI

BWO(TYPECICS|TYPEIMS|NO)
Use this parameter if backup-while-open (BWO) is allowed for the VSAM sphere. BWO applies only to
SMS data sets and cannot be used with TYPE(LINEAR). If BWO, LOG, or LOGSTREAMID is specified (or
an RLS cell exists for the data set), access from DFSMS/MVS 1.2 or a lower-level system is denied.

If BWO is specified in the SMS data class, the specified BWO value is used as part of the data set
definition, unless BWO was previously defined with an explicitly specified or modeled DEFINE
attribute.
TYPECICS

Use TYPECICS to specify BWO in a CICS or DFSMStvs environment. For RLS processing, this
activates BWO processing for CICS or DFSMStvs, or both. For non-RLS processing, CICS
determines whether to use this specification or the specification in the CICS FCT. For more
information about the use of TYPECICS, see CICS Transaction Server for z/OS (www.ibm.com/
support/knowledgecenter/SSGMGV/welcome.html).

Exception: If CICS determines that it will use the specification in the CICS FCT, the specification
might override the TYPECICS parameter for CICS processing.

Abbreviation: TYPEC

TYPEIMS
Enables BWO processing for IMS data sets. You can use this capability only with DFSMS 1.3 or
higher-level DFSMS systems. If you attempt to open a cluster that has the TYPEIMS specification
of a DFSMS 1.2 (or lower-level) system, the open will not be successful.

Abbreviation: TYPEI

NO
Use this when BWO does not apply to the cluster.

Exception: If CICS determines that it will use the specification in the CICS FCT, the specification
might override the NO parameter for CICS processing.

CATALOG(catname)
Specifies the catalog containing the entry to be altered.

To assign catalog names for SMS-managed data sets, you must have access to the RACF
STGADMIN.IGG.DIRCAT facility class. For more information, see z/OS DFSMS Access Method Services
Commands.

ALTER command

Chapter 2. Administering resources for DFSMStvs 59

http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html

catname
Is the name of the catalog that contains the entry.

Abbreviation: CAT

CCSID(value)
Is the Coded Character Set Identifier attribute; it identifies:

• Encoding scheme identifier
• Character set identifier or identifiers
• Code page identifier or identifiers
• Additional coding required to uniquely identify the coded graphic used

You can use Coded Character Set Identifier (CCSID) only for system-managed data sets. If the CCSID
parameter is not in the catalog at the time ALTER is called, it is created.

The value for CCSID can be specified in decimal (n), hexadecimal (X'n'), or binary (B'n'). The
acceptable range of values is 0 (X'0') to 65535 (X'FFFF').

ECSHARING|NOECSHARING
Indicates whether sharing this catalog can be performed through the coupling facility.
ECSHARING

Enhanced catalog sharing (ECS) is allowed. ECS is a method of catalog sharing that makes use of a
coupling facility to increase the performance of shared catalog requests. Read about ECS in z/OS
DFSMS Managing Catalogs before enabling it for a catalog.

Abbreviation: ECSHR

NOECSHARING
Enhanced catalog sharing (ECS) is not allowed. This is the default. Catalog sharing is performed,
but the ECS sharing method is not be used.

Abbreviation: NOECSHR

EMPTY|NOEMPTY
Specifies what is to happen when the maximum number of generation data sets has been cataloged.
If the GDG is full (the LIMIT is reached), this attribute determines whether all GDSs or just the oldest
GDSs are processed.

For an SMS-managed generation data set, if the NOSCRATCH attribute is used, the GDS is
uncataloged from its GDG base and is recataloged outside its GDG base as an SMS non-VSAM entry
with the rolled-off status.

EMPTY
Specifies that, when the maximum number of generation data sets is exceeded, all the generation
data sets are uncataloged or deleted.

Abbreviation: EMP

NOEMPTY
Used when the maximum number of generation data sets is exceeded, only the oldest generation
data set is uncataloged or deleted.

Abbreviation: NEMP

ERASE|NOERASE
Indicates whether to erase the component when its entry in the catalog is deleted.
ERASE

Overwrites the component with binary zeros when its catalog entry is deleted. If the cluster or
alternate index is protected by a RACF generic or discrete profile, use RACF commands to assign
an ERASE attribute as part of this profile so that the data component is automatically erased upon
deletion.

Abbreviation: ERAS

ALTER command

60 z/OS: z/OS DFSMStvs Administration Guide

NOERASE
Specifies the component is not to be overwritten with binary zeros when its catalog entry is
deleted. NOERASE resets only the indicator in the catalog entry that was created from a prior
DEFINE or ALTER command. If the cluster or alternate index is protected by a RACF generic or
discrete profile that specifies the ERASE attribute, it is erased upon deletion. Only RACF
commands can be used to alter the ERASE attribute in a profile.

Abbreviation: NERAS

EXCEPTIONEXIT(entrypoint)
Is the name of the user-written routine that receives control if an exception (usually an I/O error)
occurs while the entry's object is being processed. An exception is any condition that causes a SYNAD
exit. The object's exception exit routine is processed first, then the user's SYNAD exit routine receives
control.

Abbreviation: EEXT

FILE(ddname)
Specifies one of the following:

• The name of a DD statement that describes the volume that contains the data set to be altered.
• The name of a DD statement that identifies the volume of an entry that will be renamed. The entry

must be a non-VSAM data set or the data or index component of a cluster, alternate index, or page
space.

• The name of a DD statement that describes a partitioned data set when a member is to be renamed.

If you identify multiple volumes of different device types with FILE, use concatenated DD statements.
If you specify ADDVOLUMES or REMOVEVOLUMES, the volume being added or removed must be
identified. If FILE is not specified, an attempt is made to dynamically allocate the object's data set.
Therefore, the object's volume must be mounted as permanently resident or reserved.

Note: While the FILE parameter can preallocate a volume where the data set resides, it does not
direct the ALTER request to the data set to be altered. Instead, a catalog search is done to locate the
data set to be altered.

FILEDATA(TEXT|BINARY)
Use one of the following:
TEXT

Specifies that the data in the data set is text. If the data set is read or written across the network,
the data in this data set is EBCDIC on z/OS and ASCII on the workstation.

BINARY
Specifies that data is to be processed as is.

FREESPACE(CI-percent[CA-percent])
Indicates the percent of free space left after any allocation. CI-percent is a percentage of the amount
of space to be preserved for adding new records and updating existing records, with an increase in the
length of the record. Since a CI is split when it becomes full, the CA might also need to be split when it
is filled by CIs created by a CI split. The amounts, as percentages, must be equal to, or less than, 100.
If you use 100% of free space, one record is placed in each control interval and one control interval is
placed in each control area (CA).

Use this parameter to alter the data component of a cluster, alternate index, or catalog.

If the FREESPACE is altered after the data set has been loaded, and sequential insert processing is
used, the allocation of free space is not honored.

Abbreviation: FSPC

FRLOG(NONE|REDO)
Specifies whether VSAM batch logging can be performed for your VSAM data set. VSAM batch logging
is available with CICS VSAM Recovery V3R1.

ALTER command

Chapter 2. Administering resources for DFSMStvs 61

NONE
Disables the VSAM batch logging function for your VSAM data set. Changes made by applications
are not written to the MVS log stream indicated in the LOGSTREAMID parameter.

REDO
Enables the VSAM batch logging function for your VSAM data set. Changes made by applications
are written to the MVS log stream indicated in the LOGSTREAMID parameter. If you specify
FRLOG(REDO), you must also specify LOGSTREAMID for that data set, unless the log stream is
already defined.

Restrictions:

1. Use the FRLOG parameter only if you want to enable (REDO) or disable (NONE) VSAM batch
logging. Do not use the FRLOG parameter for data sets that are not intended for use with VSAM
batch logging.

2. If FRLOG is specified, these rules apply to the data set:

• Must be SMS-managed
• Cannot be LINEAR or a temporary data set

INHIBIT|UNINHIBIT
Specifies whether the entry being altered can be accessed for any operation or only for read
operations.
INHIBIT

Used when the entry being altered is to be read only.

Abbreviation: INH

UNINHIBIT
Indicates that the read-only restriction set by a previous ALTER or EXPORT command is to be
removed.

Abbreviation: UNINH

KEYS(length offset)
Specifies the length and offset of the object's key. If the altered entry defines an alternate index,
offset applies to the alternate key in the data records in the base cluster.

Restrictions: Use KEYS if all the following are true:

• The object whose entry is being altered is an alternate index, a path, a key-sequenced cluster, or a
data component of a key-sequenced cluster or alternate index.

• The object whose entry is being altered contains no data records.
• The values for KEYS in the object's catalog entry are default values. For default values, see the

DEFINE command for the object.
• The new values for KEYS do not conflict with the control interval size specified when the object was
defined.

• The key fits within the record whose length is specified by the RECORDSIZE parameter.
• The key fits in the first record segment of a spanned record.

length offset
Is the length of the key (between 1 and 255), in bytes, and its displacement from the beginning of
the data record, in bytes.

If the values for KEYS in the object's catalog entry are not default values and ALTER KEYS specifies
those same values, processing continues for any other parameters specified in the command, and no
error message is issued.

LOG(NONE|UNDO|ALL)
Establishes whether the sphere to be accessed with VSAM RLS or DFSMStvs is recoverable or
nonrecoverable. It also indicates whether a recovery log is available for the sphere. LOG applies to all
components in the VSAM sphere.

ALTER command

62 z/OS: z/OS DFSMStvs Administration Guide

NONE
Indicates that neither an external backout nor a forward recovery capability is available for the
spheres accessed in VSAM RLS or DFSMStvs mode. If you use this, VSAM RLS and DFSMStvs
consider the sphere to be nonrecoverable.

UNDO
Specifies that changes to the sphere accessed in VSAM RLS or DFSMStvs mode can be backed out
using an external log. VSAM RLS and DFSMStvs consider the sphere recoverable when you use
LOG(UNDO).

ALL
Specifies that changes to the sphere accessed in VSAM RLS or DFSMStvs mode can be backed out
and forward recovered using external logs. VSAM RLS and DFSMStvs consider the sphere
recoverable when you use LOG(ALL). When you specify LOG(ALL), you must also specify the
LOGSTREAMID parameter, unless it is already defined.

VSAM RLS allows concurrent read and update sharing for nonrecoverable spheres through commit
(CICS) and noncommit protocol applications. For a recoverable sphere, a noncommit protocol
application must use DFSMStvs to be able to open the sphere for update using RLS access.

Restriction: LOG cannot be used with LINEAR.

LOGSTREAMID(logstream)
Changes or adds the name of the forward recovery log stream. It applies to all components in the
VSAM sphere.
logstream

Is the name of the forward recovery log stream. This can be a fully qualified name up to 26
characters, including separators. This parameter is required if you have specified LOG(ALL).

For information about defining log streams for CICS use, see CICS Transaction Server for z/OS
(www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html).

Abbreviation: LSID

Restriction: LOGSTREAMID cannot be used with LINEAR.

LIMIT(limit)
Used to modify the maximum number (between 1 and 255) of active generation data sets that might
be associated with a generation data group base.
limit

If the limit is less than the current number of active generations, the oldest generations are rolled
off until the new limit is satisfied. Any generation data sets that are rolled off by this command are
listed showing their new status (recataloged, uncataloged, or deleted). For more information
about limit processing of a GDS, see z/OS DFSMS Managing Catalogs.

If the limit is greater than the current number of active generations, it does not cause the roll-in of
existing rolled off GDSs. For this function, see the ROLLIN parameter.

LOCK|UNLOCK
Controls the setting of the catalog lock attribute, and therefore checks access to a catalog. Use LOCK
or UNLOCK when the entry name identifies an integrated catalog facility catalog. If the LOCK|UNLOCK
parameter is not specified, the status of the integrated catalog facility catalog lock attribute is not
changed. Before you lock a catalog, review the information on locking catalogs in z/OS DFSMS
Managing Catalogs.
LOCK

Is used when the catalog identified by entryname is to be locked. Locking a catalog makes it
inaccessible to all users without read authority to RACF facility class profile IGG.CATLOCK
(including users sharing the catalog on other systems).

For protected catalogs, locking an unlocked catalog requires ALTER authority for the catalog being
locked, and read authority to RACF facility profile IGG.CATLOCK. For unprotected catalogs, locking
an unlocked catalog requires read authority to RACF facility class profile IGG.CATLOCK.

ALTER command

Chapter 2. Administering resources for DFSMStvs 63

http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html

UNLOCK
Specifies that the catalog identified by entryname is to be unlocked. For RACF and nonprotected
catalogs, unlocking a locked catalog requires read authority to RACF facility class profile
IGG.CATLOCK.

MANAGEMENTCLASS(class)
For SMS-managed data sets: Gives the name, 1 to 8 characters, of the management class for a data
set. Your storage administrator defines the names of the management classes you can include. If
MANAGEMENTCLASS is used for a non-SMS-managed data set, or if SMS is inactive, the ALTER
command is unsuccessful.

When the storage or management class is altered for a DFSMShsm migrated data set, ALTER will not
recall the data set to make the change, provided no other parameters are specified.

You must have RACF access authority to alter the management class.

Abbreviation: MGMTCLAS

NEWNAME(newname)
Indicates that the entry to be altered is to be given a new name.

When you rename an SMS-managed data set residing on DASD, the MGMTCLAS ACS routine is called
and lets you reassign a new management class.

You can use ALTER NEWNAME to rename SMS-managed generation data sets (GDS). Table 17 on
page 64 shows how NEWNAME resolves renaming a GDS under different conditions. You can
successfully rename the following:

• An SMS-managed GDS to an SMS-managed non-VSAM data set
• An SMS-managed non-VSAM data set to an SMS-managed GDS
• An SMS-managed GDS to another SMS-managed GDS

Restriction: You cannot alter the data portion of a page space data set to a new name. Also, catalog
names and catalog component names cannot be renamed.

You might not be able to rename a data set if you are changing the high-level qualifiers of the data
set's name and those qualifiers are an alias name of a catalog. (The number of high-level qualifiers
used to form an alias can be one to four, depending on the multilevel alias search level used at your
installation.)

If you are changing a high-level qualifier, NEWNAME acts differently, depending on whether the data
set being renamed is SMS-managed or non-SMS-managed, and whether the data set has aliases or
not. Table 17 on page 64 shows how NEWNAME resolves under different conditions.

Table 17. How NEWNAME resolves when change of catalog is required. This table shows how
NEWNAME resolves when change of catalog is required.

Data set type SMS Non-SMS

VSAM ALTER unsuccessful—entry not
renamed

ALTER successful—entry
remains in the source catalog

non-VSAM with no aliases ALTER successful—entry is
recataloged in target catalog.

ALTER successful—entry
remains in the source catalog

non-VSAM with aliases ALTER unsuccessful—entry not
renamed

ALTER successful—entry
remains in the source catalog

GDS with no aliases ALTER successful—entry is
recataloged in target catalog.

ALTER unsuccessful—entry not
renamed

GDS with aliases ALTER unsuccessful—entry not
renamed

ALTER unsuccessful—entry not
renamed

ALTER command

64 z/OS: z/OS DFSMStvs Administration Guide

Note: The source catalog is the catalog containing the original entry. The target catalog is the catalog
in which the new name would normally be cataloged according to a catalog alias search.

If you want to define a data set into a particular catalog, and that catalog is not the one chosen
according to the regular search, then you must have authority to RACF STGADMIN.IGG.DIRCAT
facility class. For more information on this facility class see z/OS DFSMSdfp Storage Administration.

To give an altered entry a new name:

• Unless the data set being renamed is a path, the data set's volume must be mounted because the
volume table of contents (VTOC) is modified.

You can use the FILE parameter to supply a JCL DD statement to allocate the data set. If you do not
supply a DD statement, an attempt is made to allocate the data set dynamically. The volume must
be mounted as either permanently resident or reserved.

If another program has access to the data set while this is being done, the program might not be
able to access the data set after it is renamed. This can result in an error.

• If you include generic names, you must define both entryname and newname as generic names.
• If you are renaming a member of a non-VSAM partitioned data set, the newname must be specified

in the format: pdsname(membername).
• If you are renaming a VSAM data set that is RACF protected, the existing RACF data set profile will

be renamed.
• If you are using ALTER NEWNAME, you must have one of these:

– ALTER authority for the data set or for the catalog
– ALTER authority for the new name (generic profile) or CREATE authority for the group

• If there is a data set profile for the new data set name prior to the ALTER command, the command
ends, and the data set name and protection attributes remain unchanged.

If the old profile is not found or cannot be altered to the new name, the NEWNAME action is not
completed in the catalog, and an error message indicates why the action is not completed.

If renaming is unsuccessful, it is possible that either the object exists with both the original name
and the new name, or that the data set was not closed.

Abbreviation: NEWNM

NULLIFY([AUTHORIZATION(MODULE|STRING)]
 [BWO][CODE][EXCEPTIONEXIT]
 [LOG][LOGSTREAMID][OWNER]
 [RETENTION])

Specifies that the protection attributes identified by Subparameters of NULLIFY are to be nullified.
Attributes are nullified before any respecification of attributes is done.

Abbreviation: NULL
AUTHORIZATION(MODULE|STRING)

Is used when the user authorization routine or the user authorization record is to be nullified.

Abbreviation: AUTH
MODULE

Removes the module name from the catalog record, but the module itself is not to be deleted.
Both the user authorization routine and the user authorization record (character string) are
nullified.

Abbreviation: MDLE

STRING
Nullifies the authorization record, but the corresponding module is not nullified.

Abbreviation: STRG

ALTER command

Chapter 2. Administering resources for DFSMStvs 65

BWO
Use this parameter to remove the BWO specification from the sphere.

CODE
Nullifies the code name used for prompting.

EXCEPTIONEXIT
Nullifies the entry's exception exit. The module name is removed from the catalog record, but the
exception-exit routine itself is not deleted.

Abbreviation: EEXT

LOG
Nullifies the log parameter.

Access to the RLS sphere is not permitted when the log parameter is nullified.

LOGSTREAMID
When you use this, the name of the forward recovery log stream is nullified.
NULLIFY(LOGSTREAMID) is not allowed if the data set has a value of LOG(ALL).

Abbreviation: LSID

OWNER
Nullifies the owner identification.

RETENTION
Nullifies the retention period that was used in a TO or FOR parameter.

Abbreviation: RETN

OWNER(ownerid)
Specifies the owner identification for the entry being altered.

RECORDSIZE(average maximum)
Specifies new average and maximum lengths for data records contained in the object whose entry is
being altered.

If the object whose entry is being altered is a path pointing to the alternate index, the alternate index
is altered; if it is a path pointing directly to the base cluster, the base cluster is altered.

If the object whose entry is being altered is an alternate index, the length of the alternate key must be
within the limit specified by maximum.

Restrictions: RECORDSIZE is used only if all the following are true:

• The object whose entry is being altered is an alternate index, a cluster, a path, or a data component.
• The object whose entry is being altered contains no data records.
• The maximum RECORDSIZE in the object's catalog entry is the default. For defaults, see the DEFINE

command for the object.
• If NONUNIQUEKEY is used for an alternate index, the record length to be specified accounts for the

increased record size; this results from the multiple prime key pointers in the alternate index data
record.

• Use a maximum record length of at least seven bytes less than the control interval size, unless the
record is a spanned record.

• Use a record length large enough to contain all prime and alternate keys previously defined.

If RECORDSIZE in the object's catalog entry is not the default, and ALTER RECORDSIZE specifies that
same value, processing continues for any other parameters given in the command, and there is no
error message.

Abbreviation: RECSZ

REMOVEVOLUMES(volser[volser])
Specifies volumes to be removed from the list of candidate volumes associated with the entry being
altered. The name of the data or index component must be specified in the ENTRYNAME parameter. If

ALTER command

66 z/OS: z/OS DFSMStvs Administration Guide

you are also adding volumes, the volumes to be removed are removed after the new volumes are
added to the candidate list. Only nonspecific volumes can be removed from SMS-managed, non-VSAM
data sets, and GDS data sets. For information on volume cleanup, see z/OS DFSMS Managing
Catalogs.

SMS might not use candidate volumes for which you request specific volsers. Some user-specified
volsers for an SMS-managed data set can result in an error. To avoid candidate volume problems with
SMS, you can request that SMS choose the given volser used for a candidate volume. To do this, you
can code an * for each volser that you request. If, however, you request both specified and
unspecified volsers in the same command, you must enter the specified volsers first in the command
syntax.

To ensure that the operation has completed correctly, the execution of ALTER REMOVEVOLUMES
should be followed by a listing of the VTOC on the target volume. If ALTER REMOVEVOLUMES did not
scratch any data sets allocated to job steps, it can still complete with return code zero. In the
integrated catalog facility environment, both the basic catalog structure (BCS) and the VSAM volume
data set (VVDS) might be allocated to another job or TSO/E user. If so, these entities are not
scratched, and any future access method services commands that depend on ALTER
REMOVEVOLUMES completing normally might be unsuccessful. To ensure that the operation has
completed correctly, follow the execution of ALTER REMOVEVOLUMES with a listing of the VTOC on
the target volume.

Exceptions:

1. If a volume to be removed contains data that belongs to the entry being altered, the volume is not
removed.

2. Volume cleanup is not supported if the volume is SMS managed.

Abbreviation: RVOL

REUSE|NOREUSE
Controls setting the REUSE indicator for VSAM data sets. A data set that requires the REUSE attribute
be changed to "reusable" cannot be an alternate index nor can it have an associated alternate index.
The data set also cannot be a key-sequenced data set (KSDS) with one or more key ranges.

ROLLIN
Indicates whether a generation data set is to be rolled-in. The generation data set must be SMS
managed and in either a deferred rolled-in or rolled-off state. For more information, see z/OS DFSMS
Using Data Sets.

Abbreviation: ROL

SCRATCH|NOSCRATCH
Specifies whether generation data sets, when they are uncataloged, are to be removed from the VTOC
of the volume where they reside.
SCRATCH

Removes the data set's format-1 DSCB from the VTOC so that the data set can no longer be
accessed, and, for SMS-managed data sets, the non-VSAM volume record (NVR) is removed from
the VVDS.

Abbreviation: SCR

NOSCRATCH
Indicates that the data set's format-1 DSCB is not to be removed from the VTOC and, for SMS-
managed data sets, the NVR entry remains in the VVDS.

Abbreviation: NSCR

SHAREOPTIONS(crossregion[crosssystem])
Is used when a data or index component of a cluster, alternate index, or the data component of a
catalog can be shared among users. However, SMS-managed volumes, and catalogs containing SMS-
managed data sets, must not be shared with non-SMS systems. (For a description of data set sharing,
see z/OS DFSMS Using Data Sets.)

ALTER command

Chapter 2. Administering resources for DFSMStvs 67

The value of SHAREOPTIONS is assumed to be (3,3) when the data set is accessed in VSAM RLS or
DFSMStvs mode.

crossregion
Specifies the amount of sharing allowed among regions within the same system or within multiple
systems using global resource serialization (GRS). Independent job steps in an operating system,
or multiple systems in a GRS ring, can access a VSAM data set concurrently. For a description of
GRS, see z/OS MVS Planning: Global Resource Serialization. Option 3 is the only one applicable for
altering a catalog. To share a data set, each user must code DISP=SHR in the data set's DD
statement. You can use the following options:
OPT 1

The data set can be shared by any number of users for read processing, or the data set can be
accessed by only one user for read and write processing. VSAM ensures complete data
integrity for the data set. This setting does not allow any non-RLS access when the data set is
already open for VSAM RLS or DFSMStvs processing. A VSAM RLS or DFSMStvs open will fail
with this option if the data set is already open for any processing.

OPT 2
The data set can be accessed by any number of users for read processing, and it can also be
accessed by one user for write processing. It is the user's responsibility to provide read
integrity. VSAM ensures write integrity by obtaining exclusive control for a control interval
while it is being updated. A VSAM RLS or DFSMStvs open is not allowed while the data set is
open for non-RLS output.

If the data set has already been opened for VSAM RLS or DFSMStvs processing, a non-RLS
open for input is allowed; a non-RLS open for output fails. If the data set is opened for input in
non-RLS mode, a VSAM RLS or DFSMStvs open is allowed.

OPT 3
The data set can be fully shared by any number of users. The user is responsible for
maintaining both read and write integrity for the data the program accesses. This setting does
not allow any non-RLS access when the data set is already open for VSAM RLS or DFSMStvs
processing. If the data set is opened for input in non-RLS mode, a VSAM RLS or DFSMStvs
open is allowed.

This option is the only one applicable to a catalog.

OPT 4
The data set can be fully shared by any number of users. For each request, VSAM refreshes
the buffers used for direct processing. This setting does not allow any non-RLS access when
the data set is already open for RLS processing. If the data set is opened for input in non-RLS
mode, a VSAM RLS or DFSMStvs open is allowed.

As in SHAREOPTIONS 3, each user is responsible for maintaining both read and write integrity
for the data the program accesses.

crosssystem
Is the amount of sharing allowed among systems. Job steps of two or more operating systems can
gain access to the same VSAM data set regardless of the disposition specified in each step's DD
statement for the data set. To get exclusive control of the data set's volume, a task in one system
issues the RESERVE macro. The level of cross-system sharing allowed by VSAM applies only in a
multiple operating system environment.

The cross-system sharing options are ignored by VSAM RLS or DFSMStvs processing. The values
follow:
1

Reserved.
2

Reserved.

ALTER command

68 z/OS: z/OS DFSMStvs Administration Guide

3
Specifies that the data set can be fully shared. With this option, each user is responsible for
maintaining both read and write integrity for the data the program accesses. User programs
that ignore write integrity guidelines can cause VSAM program checks, uncorrectable data set
problems, and other unpredictable results. The RESERVE and DEQ macros are required with
this option to maintain data set integrity. (For information on using RESERVE and DEQ, see
z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN and z/OS MVS
Programming: Authorized Assembler Services Reference LLA-SDU.)

4
Specifies that the data set can be fully shared. For each request, VSAM refreshes the buffers
used for direct processing. This option requires that you use the RESERVE and DEQ macros to
maintain data integrity while sharing the data set. Improper use of the RESERVE macro can
cause problems similar to those described under SHAREOPTIONS 3. (For information on using
RESERVE and DEQ, see z/OS MVS Programming: Authorized Assembler Services Reference ALE-
DYN and z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU.)

Output processing is limited to update or add processing that does not change either the high-
used relative byte address (RBA) or the RBA of the high key data control interval if DISP=SHR
is specified.

Abbreviation: SHR

STORAGECLASS(class)
For SMS-managed data sets: Gives the name, 1 to 8 characters, of the storage class. Your storage
administrator defines the names of the storage classes you can assign. A storage class is assigned
when you specify STORAGECLASS or an installation-written automatic class section (ACS) routine
selects a storage class when the data set is created. Use the storage class to provide the storage
service level to be used by SMS for storage of the data set. The storage class provides the storage
attributes that are specified on the UNIT and VOLUME operand for non-SMS-managed data sets.

When the storage or management class is altered for a DFSMShsm migrated data set, ALTER will not
recall the data set to make the change, provided no other parameters are specified.

You must have RACF access authority to alter the storage class.

If STORAGECLASS is used for a non-SMS-managed data set or if SMS is inactive, the ALTER command
is unsuccessful.

Abbreviation: STORCLAS

STRNO(number)
Specifies the number of concurrent catalog positioning requests that VSAM should manage. Use this
parameter to alter the data component of a catalog. The STRNO setting is ignored when the data set is
opened for RLS or DFSMStvs.
number

Is the number of concurrent requests VSAM must manage. The minimum number is 2, the
maximum is 255.

TO(date)|FOR(days)
Specifies the retention period for the entry being altered.

You cannot use these parameters for the data or index components of clusters or alternate indexes.
For catalogs, you must use the data component name. The expiration date in the catalog is updated,
and, for SMS-managed data sets, the expiration date in the format-1 DSCB is changed. Enter a
LISTCAT command to see the correct expiration date.

The MANAGEMENTCLASS maximum retention period, if specified, limits the retention period specified
by this parameter.
TO(date)

Specifies the date up to which an entry should be kept before it is allowed to be deleted. The date
is specified in the form [yy]yyddd, where yyyy is a four-digit year, yy is a two-digit year, and ddd is
the three-digit (001 through 366) day of the year. Two-digit years are treated as if "19" is

ALTER command

Chapter 2. Administering resources for DFSMStvs 69

specified as the first two digits of yyyy. The dates (19)99365 and (19)99366 are considered
never-expire dates.

For expiration dates of January 1, 2000, and later, you must use the form TO(yyyyddd).

FOR(days)
Is used to choose the number of days to keep the entry. The maximum number is 9999. If the
number is 0 through 9998, the entry is retained for the number of days indicated; if the number is
9999, the entry is retained indefinitely.

TYPE(LINEAR)
Specifies that the VSAM data set type of an entry-sequenced data set (ESDS) is to be changed to
linear. The contents of the data set are not modified. Only an ESDS with a CI size of 4096 is eligible to
be a linear data set. A linear data set's type cannot be changed. After you have changed an ESDS set
to a linear data set, the data set must remain a linear data set; you cannot change it back into an
ESDS.
LINEAR

Changes the VSAM data type ESDS to a linear data set (LDS).

Abbreviation: LIN

UNIQUEKEY|NONUNIQUEKEY
Specifies whether the alternate key value can be found in more than one of the base cluster's data
records.
UNIQUEKEY

Makes each alternate key value unique. If the same alternate key value is found in more than one
of the base cluster's data records, an error results.

You can use UNIQUEKEY for an empty alternate index (that is, an alternate index that is defined
but not yet built).

Abbreviation: UNQK

NONUNIQUEKEY
Allows an alternate key value to point to more than one data record in the cluster.
NONUNIQUEKEY can be specified for an alternate index at any time.

If the alternate index is empty, you should also consider defining RECORDSIZE to ensure that
each alternate index record is large enough to contain more than one data record pointer.

Abbreviation: NUNQK

UPDATE|NOUPDATE
Specifies whether a base cluster's alternate index upgrade set is to be allocated when the path's
name is allocated.

The NOUPDATE setting is ignored when the data set is opened for VSAM RLS or DFSMStvs. Alternate
indexes in the upgrade set are opened as if UPDATE was specified.
UPDATE

Allocates the cluster's alternate index upgrade set when the path's name is allocated with a DD
statement.

Abbreviation: UPD

NOUPDATE
Specifies that the cluster's alternate index upgrade set is not to be allocated but the path's cluster
is to be allocated. You can use NOUPDATE to open a path. If the path shares a control block
structure that uses UPDATE, this indicates the upgrade set has been allocated and, in this case,
the upgrade set can be updated.

Abbreviation: NUPD

ALTER command

70 z/OS: z/OS DFSMStvs Administration Guide

UPGRADE|NOUPGRADE
Shows whether an alternate index is to be upgraded (to reflect the changed data) when its base
cluster is modified.
UPGRADE

Indicates that the cluster's alternate index is upgraded (to reflect the changed data) when the
cluster's records are added to, updated, or erased. If UPGRADE is used when the cluster is open,
the upgrade attribute does not apply to the alternate index until the cluster is closed and then
opened (that is, a new set of VSAM control blocks describes the cluster and its attributes).

Use UPGRADE for an empty alternate index (that is, an alternate index that is defined but not
built). However, the UPGRADE attribute is not effective for the alternate index until the alternate
index is built (see the BLDINDEX command).

Abbreviation: UPG

NOUPGRADE
Specifies the alternate index is not to be modified when the its base cluster is modified.
NOUPGRADE can be use as an alternate index at any time.

Abbreviation: NUPG

WRITECHECK|NOWRITECHECK
Specifies whether a data or index component is to be checked by a machine action called write check
when a record is written into it. This parameter can be specified to alter the data or index components
of a cluster, an alternate index, or catalog.

The WRITECHECK setting is ignored when the data set is opened for VSAM RLS or DFSMStvs access.
WRITECHECK

Writes and reads a record without data transfer, to test for the data check condition.

Abbreviation: WCK

NOWRITECHECK
Writes the record only

Abbreviation: NWCK

ALTER examples

Alter a cluster's attributes using SMS keywords: Example 1

In this example, the ALTER command is used with the MANAGEMENTCLASS and STORAGECLASS
keywords.

//ALTER JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 ALTER -
 CLUS.ALTER.EXAMPLE -
 MANAGEMENTCLASS(VSAM) -
 STORAGECLASS(FAST) -
 LOG(ALL) -
 LOGSTREAMID(LogA)
/*

The ALTER command modifies some of the attributes of SMS-managed data set CLUS.ALTER.EXAMPLE. It
is expected to grow and require an increase in the frequency of backup, availability and performance. The
parameters are MANAGEMENTCLASS, indicating a new management class of VSAM, and STORAGECLASS,
indicating a storage class of FAST.

LOG(ALL) specifies that changes to the sphere accessed in RLS and DFSMStvs mode can be backed out
and forward recovered using external logs. LOGSTREAMID gives the name of the forward recovery log
stream.

ALTER command

Chapter 2. Administering resources for DFSMStvs 71

Roll-In a generation data set: Example 2

In this example, the ALTER command is used with the ROLLIN keyword to roll-in a generation data set
currently in the deferred roll-in state.

//ALTER JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 ALTER -
 DATA.G0001V05 -
 ROLLIN
/*

The ALTER command rolls the SMS-managed generation data set, DATA.G0001V05, into the GDG base.

Alter the entry names of generically named clusters: Example 3

In this example, several clusters with similar names, GENERIC.*.BAKER (where * is any 1- to 8-character
simple name), are renamed so that their entry names are GENERIC.*.ABLE. The name
"GENERIC.*.BAKER" is called a generic name.

//ALTER2 JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 ALTER -
 GENERIC.*.BAKER -
 NEWNAME(GENERIC.*.ABLE)
/*

The ALTER command changes each generic entry name, GENERIC.*.BAKER, to GENERIC.*.ABLE. Its
parameters are:

• GENERIC.*.BAKER identifies the objects to be modified.
• NEWNAME changes each generic entry name GENERIC.*.BAKER to GENERIC.*.ABLE.

Alter the attributes of a generation data group: Example 4

This example modifies the attributes of a generation data group. Because the attributes are cataloged in
the generation data group's base catalog entry, only this entry is modified.

//ALTER3 JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 ALTER -
 GDG01 -
 NOEMPTY -
 SCRATCH
/*

The ALTER command modifies some of the attributes of generation data group GDG01. The new
attributes override any previously used for the GDG. Its parameters are:

• GDG01 identifies the object to be modified.
• NOEMPTY uncatalogs only the oldest generation data set when the maximum number of cataloged

generation data sets is exceeded.
• SCRATCH removes the generation data set's DSCB from the volumes' VTOC when the data set is

uncataloged. If the data set is SMS-managed, the NVR is also removed.

Alter a data set expiration date: Example 6

In this example, an ALTER command is used to modify the expiration date of data set
MOD.ALTER.EXAMPLE with the keyword TO.

//ALTER5 JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A

ALTER command

72 z/OS: z/OS DFSMStvs Administration Guide

//SYSIN DD *
 ALTER -
 MOD.ALTER.EXAMPLE -
 TO(1989123)
/*

The command's parameters follow:

• MOD.ALTER.EXAMPLE is the name of the data set.
• TO changes the expiration date of the data set by name. The year (1989) is a four-digit number,

concatenated with the day (123). You can also use two digits (89) to indicate the year. For expiration
dates beyond the year 1999, a four-digit year must be specified.

Migrate a DB2® cluster to a linear data set cluster: Example 7

In this example, ALTER is used to alter a DB2 cluster EXAMPLE.ABC01, to a linear data set cluster.

//DB2TOLDS JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 ALTER -
 EXAMPLE.ABC01 -
 TYPE(LINEAR)
/*

The command's parameter TYPE(LINEAR) requests ALTER change the data set type from ESDS to LDS.

Alter a cluster name and the associated data and index names: Example 8

In this example, ALTER is used to rename a cluster and its associated data and index entries.

//EXAMPL JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME(EXAMPLE.KSDS) -
 TRK(1 1) -
 VOL (338001)) -
 DATA -
 (NAME(EXAMPLE.KSDS.DATA)) -
 INDEX -
 (NAME(EXAMPLE.KSDS.INDEX))
 ALTER -
 EXAMPLE.KSDS -
 NEWNAME(EXAMPLE.TEST)
 ALTER -
 EXAMPLE.KSDS.* -
 NEWNAME(EXAMPLE.TEST.*)
/*

In the first part of the example, DEFINE CLUSTER defines a cluster and its data and index components
with the same high-level qualifier, with these names:

• EXAMPLE.KSDS
• EXAMPLE.KSDS.DATA
• EXAMPLE.KSDS.INDEX

In the second part of the example, ALTER renames the cluster and its components.

The first ALTER command parameters are:

• EXAMPLE.KSDS identifies the object to be modified (cluster component previously defined).
• NEWNAME changes the entry name EXAMPLE.KSDS to EXAMPLE.TEST. This alters the cluster name to:

– EXAMPLE.TEST

The second ALTER command parameters are:

• EXAMPLE.KSDS.* identifies the objects to be modified (data and index components previously defined).

ALTER command

Chapter 2. Administering resources for DFSMStvs 73

• NEWNAME changes each generic entry name EXAMPLE.KSDS.* to EXAMPLE.TEST.*. This alters the data
and index names to:

– EXAMPLE.TEST.DATA
– EXAMPLE.TEST.INDEX

Attention: Use the second example of the ALTER command with caution. Any data set with the first two
qualifiers EXAMPLE.KSDS will be altered.

Defining alternate indexes
The DEFINE ALTERNATEINDEX command defines an alternate index. Use it to show attributes for the
alternate index as a whole and for the components of the alternate index. The syntax of the DEFINE
ALTERNATEINDEX command follows:

• DEFINE ALTERNATEINDEX (parameters)

– [DATA(parameters)]
– [INDEX(parameters)]
– [CATALOG(subparameters)]

The syntax of the DEFINE ALTERNATEINDEX command.

Command Parameters

DEFINE ALTERNATEINDEX

 (NAME(entryname)

 RELATE(entryname)

 {CYLINDERS(primary[secondary])|

 KILOBYTES(primary[secondary])|

 MEGABYTES(primary[secondary])|

 RECORDS(primary[secondary])|

 TRACKS(primary[secondary])}

 VOLUMES(volser[volser...])

 [BUFFERSPACE(size)]

 [CONTROLINTERVALSIZE(size)]

 [DATACLASS(class)]

 [ERASE|NOERASE]

 [EXCEPTIONEXIT(entrypoint)]

 [FILE(ddname)]

 [FREESPACE(CI-percent[CA-percent]|&cont; 0 0)]

 [KEYS(length offset|64 0)]

 [MODEL(entryname[catname])]

 [OWNER(ownerid)]

 [RECATALOG|NORECATALOG]

 [RECORDSIZE(average maximum|&cont; 4086 32600)]

 [REUSE|NOREUSE]

 [SHAREOPTIONS(crossregion[crosssystem]|&cont; 1 3)]

DEFINE ALTERNATEINDEX command

74 z/OS: z/OS DFSMStvs Administration Guide

The syntax of the DEFINE ALTERNATEINDEX command. (continued)

Command Parameters

 [SPEED|RECOVERY]

 [TO(date)|FOR(days)]

 [UNIQUEKEY|NONUNIQUEKEY]

 [UPGRADE|NOUPGRADE]

 [WRITECHECK|NOWRITECHECK])

[DATA (

 {CYLINDERS(primary[secondary])|

 KILOBYTES(primary[secondary])|

 MEGABYTES(primary[secondary])|

 RECORDS(primary[secondary])|

 TRACKS(primary[secondary])}

 [VOLUMES(volser[volser...])]

 [ATTEMPTS(number)]

 [AUTHORIZATION(entrypoint[string])]

 [BUFFERSPACE(size)]

 [CODE(code)]

 [CONTROLINTERVALSIZE(size)]

 [ERASE|NOERASE]

 [EXCEPTIONEXIT(entrypoint)]

 [FILE(ddname)]

 [FREESPACE(CI-percent[CA-percent])]

 [KEYS(length offset)]

 [MODEL(entryname [catname&cont;])]

 [NAME(entryname)]

 [OWNER(ownerid)]

 [RECORDSIZE(average maximum)]

 [REUSE|NOREUSE]

 [SHAREOPTIONS(crossregion[crosssystem])]

 [SPEED|RECOVERY]

 [UNIQUEKEY|NONUNIQUEKEY]

 [WRITECHECK|NOWRITECHECK])]

[INDEX (

 {CYLINDERS(primary[secondary])|

 KILOBYTES(primary[secondary])|

 MEGABYTES(primary[secondary])|

 RECORDS(primary[secondary])|

DEFINE ALTERNATEINDEX command

Chapter 2. Administering resources for DFSMStvs 75

The syntax of the DEFINE ALTERNATEINDEX command. (continued)

Command Parameters

 TRACKS(primary[secondary])}

 [VOLUMES(volser[volser...])]

 [ATTEMPTS(number)]

 [AUTHORIZATION(entrypoint[string])]

 [CODE(code)]

 [CONTROLINTERVALSIZE(size)]

 [EXCEPTIONEXIT(entrypoint)]

 [FILE(ddname)]

 [MODEL(entryname[catname&cont;])]

 [NAME(entryname)]

 [OWNER(ownerid)]

 [REUSE|NOREUSE]

 [SHAREOPTIONS(crossregion[crosssystem])]

 [WRITECHECK|NOWRITECHECK])]

[CATALOG(catname)]

DEFINE can be abbreviated: DEF

Restriction: If IMBED, KEYRANGE, ORDERED, or REPLICATE is specified, it is ignored.

DEFINE ALTERNATEINDEX parameters

Required parameters
ALTERNATEINDEX

Defines an alternate index or recatalogs an alternate index entry.

The ALTERNATEINDEX keyword is followed by the parameters for the alternate index as a whole.
These parameters are enclosed in parentheses and, optionally, are followed by parameters given
separately for the DATA and INDEX components.

Abbreviation: AIX

NAME(entryname)
Is the alternate index's entryname or the name of each of its components. The entry name specified
for the alternate index as a whole is not propagated to the alternate index's components.

You can define a separate entry name for the alternate index, its data component, and its index
component. If you do not give a name for the data or index component, one is generated. For more
information about the system-generated name format, see z/OS DFSMS Managing Catalogs.

When the alternate index, data component, and index component are individually named, each can be
addressed.

RELATE(entryname)
Names the alternate index base cluster. The base cluster is an entry-sequenced cluster or a key-
sequenced cluster to which the alternate index is to be related. You cannot relate an alternate index
to a reusable cluster, to a relative record cluster, to an extended addressability ESDS, or to a VVDS

DEFINE ALTERNATEINDEX command

76 z/OS: z/OS DFSMStvs Administration Guide

(data set name 'SYS1.VVDS.Vvolser'). An SMS-managed alternate index has the same management
class and storage class as its base cluster.

Select the entryname so that the multilevel alias facility selects the same catalog as the one
containing the related data set name.

Abbreviation: REL

CYLINDERS(primary[secondary])|

KILOBYTES(primary[secondary])|

MEGABYTES(primary[secondary])|

RECORDS(primary[secondary])|

TRACKS(primary[secondary])
Is the amount of space in cylinders, kilobytes, megabytes, records, or tracks allocated to the alternate
index from the volume's available space. A kilobyte and megabyte allocation resolves to either tracks
or cylinders; records are allocated to the nearest track boundary.

Exception: If allocation resolves to tracks, the space is contiguous. For more information, see z/OS
DFSMS Using Data Sets.

Requests for space are directed to DADSM and result in a format-1 DSCB for the data and index
component entries.

If you do not use the MODEL parameter or the RECATALOG parameter, you must include one, and
only one, of these parameters: CYLINDERS, KILOBYTES, MEGABYTES, RECORDS, or TRACKS.

The space parameter is optional if the cluster is SMS-managed, but if you do not use it, space can be
modeled or defaulted by SMS. If it is not determined, the DEFINE is unsuccessful.

To maintain device independence, do not use the TRACKS or CYLINDERS parameters. If you do not
use TRACKS or CYLINDERS for an SMS-managed alternate index, space is allocated on the volume
selected by SMS.

When you do not divide the data component into key ranges, and more than one volume is given, the
primary amount of space is allocated only on the first volume when the component is defined. When
the component increases to extend to additional volumes, the first allocation on each overflow
volume is the primary amount.

Secondary amounts can be allocated on all volumes available to contain parts of the alternate index,
regardless of the key ranges when the alternate index is extended.

You can include the amount of space as a parameter of ALTERNATEINDEX, as a parameter of DATA,
or as a parameter of both DATA and INDEX:

• If the space is specified as a parameter of ALTERNATEINDEX, the amount specified is divided
between the data and index components. The division algorithm is a function of control interval size,
record size, device type, and other data set attributes.

If the division results in an allocation for the data component that is not an integral multiple of the
required control area size, the data component's allocation is rounded up to the next higher control
area multiple. This rounding can result in a larger total allocation for your alternate index than what
you specified.

• If the space is specified as a parameter of DATA, the entire amount given is allocated to the data
component. An additional amount of space, depending on control interval size, record size, device
type, and other data set attributes, is allocated to the index component.

To determine the exact amount of space allocated to each component, list the alternate index's
catalog entry, using the LISTCAT command.

DEFINE ALTERNATEINDEX command

Chapter 2. Administering resources for DFSMStvs 77

The primary and each secondary allocation must be able to be satisfied within five extents; otherwise,
your DEFINE or data set extension is unsuccessful.

You can use these keywords for both SMS-managed and non-SMS-managed data sets.
primary

Allocates the initial amount of space to the alternate index.
secondary

Allocates the amount of space each time the alternate index extends, as a secondary extent. If the
secondary space allocation is greater than 4.0 gigabytes, it is reduced to an amount as close to
4.0 GB as possible, without going over. This is not true for extended addressability data sets,
which have no such space limitation. When you use secondary, space for the alternate index's
data and index components can be expanded to a maximum of 123 extents.

Abbreviations: CYL, KB, MB, REC, and TRK

VOLUMES(volser[volser...])
Specifies the volumes on which an alternate index's components are to have space. This parameter is
not required if the cluster is modeled or if the cluster is SMS-managed. You can specify VOLUMES for
SMS-managed data sets; however, the volumes specified might not be used and, in some cases, can
result in an error.

For SMS-managed data sets, you can use up to 59 volumes. If the combined number of volumes for a
cluster and its associated alternate indexes exceeds 59, unpredictable results can occur.

You can let SMS choose the volumes for SMS-managed data sets by coding an * for the volser with the
VOLUMES parameter. If both user-specified and SMS-specified volumes are requested, the user-
specified volser must be input first in the command syntax. The default is one volume.

If you do not use the MODEL parameter, VOLUMES must be placed as a parameter of
ALTERNATEINDEX, or as a parameter of both DATA and INDEX.

If the data and index components are to reside on different device types, you must include VOLUMES
as a parameter of both DATA and INDEX. If more than one volume is listed with a single VOLUMES
parameter, the volumes must be the same device type.

You can repeat a volume serial number in the list only if you use the KEYRANGE parameter. This can
place more than one key range on the same volume. However, repetition is valid only if all duplicate
occurrences are used for the primary allocation of some key range.

The VOLUMES parameter interacts with other DEFINE ALTERNATEINDEX parameters. Ensure that the
volumes you define for the alternate index are consistent with the alternate index's other attributes:

• CYLINDERS, RECORDS, TRACKS: The volumes contain enough available space to satisfy the
component's primary space requirement.

• FILE: To define an alternate index, the volume information supplied with the DD statement pointed
to by FILE must be consistent with the information listed for the alternate index and its
components.

Abbreviation: VOL

Optional parameters

The DEFINE ALTERNATEINDEX command has the following optional parameters.

BUFFERSPACE(size)
Provides the minimum space for buffers. VSAM determines the data component's and index
component's control interval size. If you do not use BUFFERSPACE, VSAM provides enough space to
contain two data component control intervals and, if the data is key-sequenced, one index component
control interval.
size

Is the amount of buffer space. You can use decimal (n), hexadecimal (X'n'), or binary (B'n'), not to
exceed 16,776,704. The size cannot be less than enough space to contain two data component
control intervals and if the data is key sequenced, one index control interval.

DEFINE ALTERNATEINDEX command

78 z/OS: z/OS DFSMStvs Administration Guide

If the buffer size is less than VSAM requires to run your job, the size is set to the default value, as
though the parameter were not specified.

Exception: When you use VSAM RLS or DFSMStvs access, DFSMS ignores BUFFERSPACE.

Abbreviations: BUFSP or BUFSPC

CATALOG(catname)
Identifies the catalog in which the alternate index is defined. The catalog also contains the base
cluster's entry (see the description of the RELATE parameter in preceding text).

Before you can assign catalog names for SMS-managed data sets, you must have access to the RACF
STGADMIN.IGG.DIRCAT facility class. For the order in which a catalog is selected if the catalog's
name is not specified and more information, see z/OS DFSMS Access Method Services Commands.
catname

Names the catalog.

If the catalog's volume is physically mounted, it is dynamically allocated. Mount the volume as
permanently resident or reserved.

Abbreviation: CAT

CONTROLINTERVALSIZE(size)
Defines the size of the alternate index's control intervals. This depends on the maximum size of data
records, and on the amount of buffer space given.

LSR/GSR buffering technique users can ensure buffer pool selection by explicitly defining data and
index control interval sizes.

When you do not specify the control interval size, VSAM determines it. If you have not specified
BUFFERSPACE and the size of your records permits, VSAM selects the optimum size for the data
control interval size and 512 bytes for the index control interval size.
size

Is the size of the alternate index's data and index components.

Because an alternate index always has the spanned attribute, the control interval size can be less
than the maximum record length. You can define a size from 512, to 8K in increments of 512 or
from 8K to 32K in increments of 2K (where K is 1024 in decimal notation). If you use a size that is
not a multiple of 512 or 2048, VSAM chooses the next higher multiple.

The index control interval should be large enough to accommodate all of the compressed keys in a
data control area. If the index control interval size is too small, unnecessary control area splits can
occur. After the first define (DEFINE), a catalog listing (LISTC) shows the number of control
intervals in a control area and the key length of the data set. To make a general estimate of the
index control interval size needed, multiply one-half of the key length (KEYLEN) by the number of
data control intervals per control area (DATA CI/CA):

(KEYLEN/2) * DATA CI/CA ≤ INDEX CISIZE

For information about the relationship between control interval size and physical block size, see
z/OS DFSMS Using Data Sets. This document also includes restrictions that apply to control
interval size and physical block size.

Abbreviations: CISZ or CNVSZ

DATACLASS(class)
Is the 1- to 8-character name of the data class for the data set. The DATACLASS parameter provides
the allocation attributes for new data sets. Your storage administrator defines the data class.
However, you can override the parameters defined for DATACLASS by explicitly defining other
attributes. For the order of precedence (filtering) that the system uses to select which attribute to
assign, see z/OS DFSMS Access Method Services Commands. The record organization attribute of
DATACLASS is not used for DEFINE ALTERNATEINDEX.

DATACLASS parameters apply to both SMS-managed and non-SMS-managed data sets. If
DATACLASS is used and SMS is inactive, the DEFINE is unsuccessful.

DEFINE ALTERNATEINDEX command

Chapter 2. Administering resources for DFSMStvs 79

You cannot use DATACLASS as a subparameter of DATA or INDEX.

Abbreviation: DATACLAS

ERASE|NOERASE
indicates if the records of the alternate index components are erased when the alternate index is
deleted.
ERASE

Requires the records of the alternate index components are overwritten with binary zeros when
the alternate index is deleted. If the base cluster of the alternate index is protected by a RACF
generic or discrete profile and the base cluster is cataloged in an integrated catalog facility
catalog, you can use RACF commands to specify an ERASE attribute as part of this profile so that
the component is automatically erased upon deletion.

Abbreviation: ERAS

NOERASE
Specifies that the records of the alternate index components are not to be overwritten with binary
zeros. NOERASE prevents the component from being erased if the base cluster of the alternate
index is protected by a RACF generic or discrete profile that specifies the ERASE attribute and if
the base cluster is cataloged in an integrated catalog facility catalog. You can use RACF
commands to alter the ERASE attribute in a profile.

Abbreviation: NERAS

EXCEPTIONEXIT(entrypoint)
Is the name of your exception exit routine, that receives control when an exceptional I/O error
condition occurs during the transfer of data between your program's address space and the alternate
index's direct access storage space. (An exception is any condition that causes a SYNAD exit to be
taken.) The component's exception exit routine is processed first; then SYNAD exit routine receives
control. If an exception exit routine is loaded from an unauthorized library during access method
services processing, an abnormal termination occurs.

Abbreviation: EEXT

FILE(ddname)
Names the DD statement that identifies the direct access devices and volumes on which to allocate
space to the alternate index. If more than one volume is specified in a volume list, all volumes must
be the same device type.

When the data component and index component are to reside on different devices, you can create a
separate FILE parameter as a parameter of DATA and INDEX to point to different DD statements.

If the FILE parameter is not used, an attempt is made to dynamically allocate the required volumes.
The volumes must be mounted as permanently resident or reserved.

The DD statement you specify must be:

//ddname DD UNIT=(devtype[,unitcount]),
// VOL=SER=(volser1,volser2,volser3,...),DISP=OLD

Restriction: When FILE refers to more than one volume of the same device type, the DD statement
that describes the volumes cannot be a concatenated DD statement.

FREESPACE(CI-percent[CA-percent]|0 0)
Designates the amount of empty space left after any primary or secondary allocation and any split of
control intervals (CI-percent) and control areas (CA-percent) when the alternate index is built (see
z/OS DFSMS Access Method Services Commands). The empty space in the control interval and control
area is available for data records that are updated and inserted after the alternate index is initially
built. The amounts are specified as percentages. CI-percent translates into a number of bytes that is
either equal to, or slightly less than, the percentage value of CI-percent. CA-percent translates into a
number of control intervals that is either equal to, or less than, the percentage of CA-percent.

DEFINE ALTERNATEINDEX command

80 z/OS: z/OS DFSMStvs Administration Guide

The percentages must be equal to, or less than, 100. When you use 100% of free space, one data
record is placed in the first control interval of each control area when the alternate index is built.

Abbreviation: FSPC

IMBED|NOIMBED
The IMBED|NOIMBED parameter is no longer supported. If you specify this parameter, VSAM ignores
it, and no message is issued.

KEYRANGES((lowkey highkey)[(lowkey highkey)...])
The KEYRANGES parameter is no longer supported. If you specify this parameter, VSAM ignores it,
and no message is issued.

KEYS(length offset|64 0)
Describes the alternate-key field in the base cluster's data record.

The key field of an alternate index is called an alternate key. The data record's alternate key can
overlap or be contained entirely within another (alternate or prime) key field.

The length plus offset cannot be greater than the length of the base cluster's data record.

When the base cluster's data record spans control intervals, the record's alternate-key field is within
the record's first segment (that is, in the first control interval).
length offset

Gives the length of the alternate key, in bytes (between 1 and 255), and its displacement from the
beginning of the base cluster's data record, in bytes.

MODEL(entryname[&cont; catname])
Uses existing entry as a model for the entry being defined or recataloged.

DATACLASS, MANAGEMENTCLASS, and STORAGECLASS cannot be modeled. For information about
how the system selects modeled attributes, see z/OS DFSMS Access Method Services Commands.

You can use an existing alternate index's entry as a model for the attributes of the alternate index
being defined. For details about how a model is used, see z/OS DFSMS Managing Catalogs.

You can use some attributes of the model and override others by defining them in the cluster or
component. If you do not want to add or change any attributes, use only the entry type of the model
(alternate index, data, or index) and the name of the entry to be defined.

When you use an alternate index entry as a model for an alternate index, the model entry's data and
index components are used as models for the to-be-defined entry's data and index components,
unless another entry is specified with the MODEL parameter as a subparameter of DATA or INDEX.
entryname

Names the entry to be used as a model.
catname

Names the model entry's catalog. You must identify the catalog that contains the model entry
when:

• The model entry's catalog is not identified with a JOBCAT or STEPCAT DD statement, and is not
the master catalog.

If the catalog's volume is physically mounted, it is dynamically allocated. The volume must be
mounted as permanently resident or reserved. See z/OS DFSMS Access Method Services
Commands for information about the order in which a catalog is selected when the catalog's name
is not specified.

ORDERED|UNORDERED
The ORDERED|UNORDERED parameter is no longer supported. If you specify this parameter, VSAM
ignores it, and no message is issued.

OWNER(ownerid)
Gives the identification of the alternate index's owner.

DEFINE ALTERNATEINDEX command

Chapter 2. Administering resources for DFSMStvs 81

For TSO/E users, if the OWNER parameter does not identify the owner, the TSO/E user ID becomes
the ownerid value.

RECATALOG|NORECATALOG
Specifies whether the catalog entries for the alternate index components are re-created from
information in the VVDS.
RECATALOG

Recreates the catalog entries if valid VVDS entries are found on the primary VVDS volume. If not,
the command ends.

Use of RECATALOG requires that the NAME, RELATE, and VOLUMES parameters be specified as
they were when the alternate index was originally defined. If you use RECATALOG, you are not
required to include CYLINDERS, RECORDS, or TRACKS.

If ATTEMPTS, AUTHORIZATION, CATALOG, CODE, FOR, MODEL, NOUPGRADE, OWNER, or TO
parameters were used during the original define, they must be entered again with RECATALOG to
restore their original values; otherwise, their default values are used.

Abbreviation: RCTLG

NORECATALOG
Specifies that the catalog entries are not to be re-created from VVDS entries. Catalog entries are
created for the first time.

Abbreviation: NRCTLG

RECORDSIZE(average maximum|4086 32600)
Is the average and maximum length, in bytes, of an alternate index record.

An alternate index record can span control intervals, so RECORDSIZE can be larger than
CONTROLINTERVALSIZE. The formula for the maximum record size of spanned records as calculated
by VSAM is:

MAXLRECL = CI/CA * (CISZ - 10)

where:

• MAXLRECL is the maximum spanned record size
• CI/CA represents the number of control intervals per control area
• CA is the number of control areas
• CISZ is the quantity control interval size

You can use either of the following formulas to determine the size of the alternate-index record.

• When the alternate index supports a key-sequenced base cluster, use this formula:

RECSZ = 5 + AIXKL + (n x BCKL)

• When the alternate index supports an entry-sequenced base cluster, use this formula:

RECSZ = 5 + AIXKL + (n x 4)

Variables in the formulas represent these values:

• RECSZ is the average record size.
• AIXKL is the alternate-key length (see the KEYS parameter).
• BCKL is the base cluster's prime-key length. (You can enter the LISTCAT command to determine

this prime-key length.)
• n = 1 when UNIQUEKEY is specified (RECSZ is also the maximum record size).
• n = the number of data records in the base cluster that contain the same alternate-key value, when

NONUNIQUEKEY is specified.

DEFINE ALTERNATEINDEX command

82 z/OS: z/OS DFSMStvs Administration Guide

When you use NONUNIQUEKEY, give a record size large enough to allow for as many key pointers or
RBA pointers as you might need. The record length values apply only to the alternate index's data
component.

Note: REPRO and EXPORT do not support data sets with record sizes greater than 32760.

Abbreviation: RECSZ

REPLICATE|NOREPLICATE
The REPLICATE|NOREPLICATE parameter is no longer supported. If you specify this parameter, VSAM
ignores it, and no message is issued.

REUSE|NOREUSE
Indicates whether or not the alternate index can be used again as a new alternate index.
REUSE

Indicates that the alternate index can be used over again as a new alternate index. When a
reusable alternate index is opened, its high-used RBA can be set to zero. Open it with an access
control block using the RESET attribute.

When you use BLDINDEX to build a reusable alternate index, the high-used RBA is always reset to
zero when the alternate index is opened for BLDINDEX processing.

Reusable alternate indexes can be multivolumed and might have up to 123 physical extents.

Exception: If you use the keyword UNIQUE with REUSE, the DEFINE command is unsuccessful.

Abbreviation: RUS

NOREUSE
Specifies that the alternate index cannot be used again as a new alternate index.

Abbreviation: NRUS

SHAREOPTIONS(crossregion[crosssystem]|1 3)
Specifies how an alternate index's data or index component can be shared among users. However,
SMS-managed volumes, and catalogs containing SMS-managed data sets, must not be shared with
non-SMS systems. For data integrity, ensure that share options defined for data and index
components are the same. For a description of data set sharing, see z/OS DFSMS Using Data Sets.
crossregion

Indicates the amount of sharing allowed among regions within the same system or within multiple
systems using global resource serialization (GRS). Independent job steps in an operating system,
or multiple systems in a GRS ring, can access a VSAM data set concurrently. For more information
about GRS, see z/OS DFSMS Using Data Sets. To share a data set, each user must include
DISP=SHR in the data set's DD statement. You can use the following options:
OPT 1

The data set can be shared by any number of users for read processing, or the data set can be
accessed by only one user for read and write processing. This setting does not allow any non-
RLS access when the data set is already open for VSAM RLS or DFSMStvs processing. A VSAM
RLS or DFSMStvs open fails with this option if the data set is already open for any processing.

OPT 2
The data set can be accessed by any number of users for read processing, and it can also be
accessed by one user for write processing. It is the user's responsibility to provide read
integrity. VSAM ensures write integrity by obtaining exclusive control for a control interval
while it is being updated. A VSAM RLS or DFSMStvs open is not allowed while the data set is
open for non-RLS output.

If the data set has already been opened for VSAM RLS or DFSMStvs processing, a non-RLS
open for input is allowed; a non-RLS open for output fails.1 If the data set is opened for input
in non-RLS mode, a VSAM RLS or DFSMStvs open is allowed.

1 You must apply APARs OW25251 and OW25252 to allow non-RLS read access to data sets already opened
for VSAM RLS or DFSMStvs processing.

DEFINE ALTERNATEINDEX command

Chapter 2. Administering resources for DFSMStvs 83

OPT 3
The data set can be fully shared by any number of users. The user is responsible for
maintaining both read and write integrity for the data the program accesses. This setting does
not allow any non-RLS access when the data set is already open for VSAM RLS or DFSMStvs
processing. If the data set is opened for input in non-RLS mode, a VSAM RLS or DFSMStvs
open is allowed.

This option is the only one applicable to a catalog.

OPT 4
The data set can be fully shared by any number of users. For each request, VSAM refreshes
the buffers used for direct processing. This setting does not allow any non-RLS access when
the data set is already open for VSAM RLS or DFSMStvs processing. If the data set is opened
for input in non-RLS mode, a VSAM RLS or DFSMStvs open is allowed.

As in SHAREOPTIONS 3, each user is responsible for maintaining both read and write integrity
for the data the program accesses.

crosssystem
Specifies the amount of sharing allowed among systems. Job steps of two or more operating
systems can gain access to the same VSAM data set regardless of the disposition specified in each
step's DD statement for the data set. However, if you are using GRS across systems or JES3, the
data set might not be shared depending on the disposition of the system.

To get exclusive control of the data set's volume, a task in one system issues the RESERVE macro.
The level of cross-system sharing allowed by VSAM applies only in a multiple operating system
environment.

The cross-system sharing options are ignored by VSAM RLS or DFSMStvs processing. The values
follow:
1

Reserved.
2

Reserved.
3

Specifies that the data set can be fully shared. Each user is responsible for maintaining both
read and write integrity for the data that user's program accesses. User programs that ignore
write integrity guidelines can result in:

• VSAM program checks
• Uncorrectable data set errors
• Unpredictable results

The RESERVE and DEQ macros are required with this option to maintain data set integrity.
(See z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN and z/OS MVS
Programming: Authorized Assembler Services Reference LLA-SDU for information on using
RESERVE and DEQ.) If the sphere is accessed using VSAM RLS or DFSMStvs protocols, VSAM
RLS or DFSMStvs maintains the required integrity.

4
Specifies that the data set can be fully shared. For each request, VSAM refreshes the buffers
used for direct processing. This option requires that you use the RESERVE and DEQ macros to
maintain data integrity while sharing the data set. Improper use of the RESERVE macro can
cause problems similar to those described under SHAREOPTIONS 3. (See z/OS MVS
Programming: Authorized Assembler Services Reference ALE-DYN and z/OS MVS Programming:
Authorized Assembler Services Reference LLA-SDU for information on using RESERVE and
DEQ.) Output processing is limited to update, or add processing, or both that does not change
either the high-used RBA or the RBA of the high key data control interval if DISP=SHR is used.

To ensure data integrity in a shared environment, VSAM provides users of SHAREOPTIONS 4
(cross-region and cross-system) with the following assistance:

DEFINE ALTERNATEINDEX command

84 z/OS: z/OS DFSMStvs Administration Guide

• Each PUT writes the appropriate buffer immediately into the VSAM object's DASD. VSAM writes
out the buffer in the user's address space that contains the new or updated data record.

• Each GET refreshes the user's input buffers. The contents of each data and index buffer used by
the user's program is retrieved from the VSAM object's DASD.

Exception: If you use VSAM RLS or DFSMStvs, SHAREOPTIONS is assumed to be (3,3). If you do not
use VSAM RLS or DFSMStvs, the SHAREOPTIONS specification is respected.

Abbreviation: SHR

SPEED|RECOVERY
Specifies whether or not the data component's control areas are preformatted before alternate index
records are loaded into them.

This parameter is only considered during the actual loading (creation) of a data set, when the data set
is opened and the high-used RBA is equal to zero. After normal CLOSE processing at the completion of
the load operation, the physical structure of the data set and the content of the data set extents are
exactly the same. Any processing of the data set following that successful load operation is the same
and the specification of this parameter is not considered.

If you use RECOVERY, the initial load takes longer because the control areas are first written with
either empty or software end-of-file intervals. These preformatted CIs are then updated, using update
writes, with the alternate index records. SPEED is recommended, because the initial load is quicker.
SPEED

Does not preformat the data component's space.

If the initial load is unsuccessful, you must load the alternate index records again from the
beginning, because VSAM cannot determine the location of your last correctly written record.
VSAM cannot find a valid end-of-file indicator when it searches your alternate index records.

RECOVERY
Specifies that the data component's control areas are written with records that indicate end-of-
file. When an alternate index record is written into a control interval, it is always followed by a
record that identifies the record just written as the last record in the alternate index.

RECOVERY is a way to verify storage used on the device for each CA before the data is actually
written.

Abbreviation: RCVY

TO(date)|FOR(days)
Is the retention period for the alternate index. The alternate index is not automatically deleted
when the expiration date is reached. When you do not provide a retention period, the alternate
index can be deleted at any time. The MANAGEMENTCLASS maximum retention period, if used,
limits the retention period named by this parameter.

For non-SMS-managed data sets, the correct retention period is reflected in the catalog entry. The
VTOC entry might not have the correct retention period. Enter a LISTCAT command to see the
correct expiration date.

For SMS-managed data sets, the expiration date in the catalog is updated and the expiration date
in the format-1 DSCB is changed. Should the expiration date in the catalog not agree with the
expiration date in the VTOC, the VTOC entry overrides the catalog entry. In this case, enter a
LISTVTOC command to see the correct expiration date.
TO(date)

Specifies the earliest date that alternate index can be deleted. The date is specified in the
form [yy]yyddd, where yyyy is a four-digit year, yy is a two-digit year, and ddd is the three-digit
(001 through 366) day of the year. Two-digit years are treated as if "19" is specified as the
first two digits of yyyy. The dates (19)99365 and (19)99366 are considered never-expire
dates.

For expiration dates of January 1, 2000, and later, you must use the form TO(yyyyddd).

DEFINE ALTERNATEINDEX command

Chapter 2. Administering resources for DFSMStvs 85

The maximum yyyy value is a four-digit year (through 2155), and the maximum ddd value is a
three-digit day from 000 through 365 for non-leap years. For leap years, the maximum ddd
value is 366.

FOR(days)
Is the number of days to keep the alternate index before it is deleted. The maximum number
is 9999. If the number is 0 through 9998, the alternate index is retained for that number of
days; if the number is 9999, the alternate index is retained indefinitely.

UNIQUEKEY|NONUNIQUEKEY
Shows whether more than one data record (in the base cluster) can contain the same key value for
the alternate index.
UNIQUEKEY

Points each alternate index key to only one data record. When the alternate index is built (see
z/OS DFSMS Access Method Services Commands) and more than one data record contains the
same key value for the alternate index, the BLDINDEX processing ends with an error message.

Abbreviation: UNQK

NONUNIQUEKEY
Points a key value for the alternate index to more than one data record in the base cluster. The
alternate index's key record points to a maximum of 32768 records with non-unique keys.

When you include NONUNIQUEKEY, the maximum record size should be large enough to allow
for alternate index records that point to more than one data record.

Abbreviations: NUNQK

UPGRADE|NOUPGRADE
Specifies whether or not the alternate index is to be upgraded (that is, kept up to date) when its
base cluster is modified.
UPGRADE

Upgrades the cluster's alternate index to reflect changed data when the base cluster's records
are added to, updated, or erased.

When UPGRADE is specified, the alternate index's name is cataloged with the names of other
alternate indexes for the base cluster. The group of alternate index names identifies the
upgrade set that includes all the base cluster's alternate indexes that are opened when the
base cluster is opened for write operations.

The UPGRADE attribute is not effective for the alternate index until the alternate index is built
(see z/OS DFSMS Access Method Services Commands). If the alternate index is defined when
the base cluster is open, the UPGRADE attribute takes effect the next time the base cluster is
opened.

Abbreviation: UPG

NOUPGRADE
Specifies that the alternate index does not upgrade when its base cluster is modified.

Abbreviation: NUPG

WRITECHECK|NOWRITECHECK
Determines whether an alternate index or component is checked by a machine action called
write-check when a record is written into it.
WRITECHECK

Indicates that a record is written and then read, without data transfer, to test for the data
check condition.

Exception: When you use VSAM RLS or DFSMStvs access, the WRITECHECK parameter is
ignored.

Abbreviation: WCK

DEFINE ALTERNATEINDEX command

86 z/OS: z/OS DFSMStvs Administration Guide

NOWRITECHECK
Does not write-check the alternate index or component.

Abbreviation: NWCK

Data and index components of an alternate index

Attributes can be specified separately for the alternate index's data and index components. There is a list
of the DATA and INDEX parameters at the beginning of this topic. These are described in detail as
parameters of the alternate index as a whole. Restrictions are noted with each description.

DEFINE ALTERNATEINDEX examples

Define an alternate index using SMS data class specification: Example 1

In this example, an SMS-managed alternate index is defined. Because a data class is specified and no
overriding attributes are explicitly specified, this define will be unsuccessful if SMS is inactive.

//DEFAIX JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE ALTERNATEINDEX -
 (NAME(EXMP1.AIX) -
 RELATE(EXAMPLE.SMS1) -
 DATACLAS(VSALLOC) -
 NONUNIQUEKEY -
 UPGRADE)
/*

The DEFINE ALTERNATEINDEX command creates an alternate index entry, a data entry, and an index
entry to define the alternate index EXMP1.AIX. The parameters are:

• NAME indicates that the alternate index's name is EXMP1.AIX.
• RELATE identifies the alternate index base cluster, EXAMPLE.SMS1. Because an SMS-managed

alternate index is being defined, the base cluster must also be SMS-managed.
• DATACLAS is an installation-defined name of an SMS data class. The data set assumes the RECORG or

RECFM, LRECL, KEYLEN, KEYOFF, AVGREC, SPACE, EXPDT or RETPD, VOLUME, CISIZE, FREESPACE,
and SHAREOPTIONS parameters assigned to this data class by the ACS routines. This parameter is
optional. If it is not used, the data set will assume the data class default assigned by the ACS routines.

• NONUNIQUEKEY specifies that the alternate key value might be the same for two or more data records
in the base cluster.

• UPGRADE specifies that the alternate index is to be opened by VSAM and upgraded each time the base
cluster is opened for processing.

Define an SMS-managed alternate index: Example 2

In this example, an SMS-managed alternate index is defined. Data class is not used, and explicitly defined
attributes override any attributes in the default data class.

//DEFAIX JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE ALTERNATEINDEX -
 (NAME(EXMP2.AIX) -
 RELATE(EXAMPLE.SMS2) -
 KEYS(3 0) -
 RECORDSIZE(40 50) -
 KILOBYTES(1600 200) -
 NONUNIQUEKEY -
 UPGRADE)
/*

The DEFINE ALTERNATEINDEX command creates an alternate index entry, a data entry, and an index
entry to define the alternate index EXMP2.AIX. The command's parameters are:

DEFINE ALTERNATEINDEX command

Chapter 2. Administering resources for DFSMStvs 87

• NAME indicates that the alternate index's name is EXMP2.AIX.
• RELATE identifies the alternate index base cluster, EXAMPLE.SMS2. Because an SMS-managed

alternate index is being defined, the base cluster must also be SMS-managed.
• KEYS specifies the length and location of the alternate key field in each of the base cluster's data

records. The alternate key field is the first three bytes of each data record.
• RECORDSIZE specifies that the alternate index's records are variable length, with an average size of 40

bytes and a maximum size of 50 bytes.
• KILOBYTES allocates the minimum number of tracks required to contain 1600 kilobytes for the

alternate index's space. When the alternate index is extended, it is to be extended by the minimum
number of tracks required to contain 200 kilobytes.

• NONUNIQUEKEY means the alternate key value might be the same for two or more data records in the
base cluster.

• UPGRADE opens the alternate index by VSAM and upgrades it each time the base cluster is opened for
processing.

Define an alternate index: Example 3

In this example, an alternate index is defined. An example for DEFINE CLUSTER illustrates the definition
of the alternate index's base cluster, EXAMPLE.KSDS2. A subsequent example illustrates the definition of
a path, EXAMPLE.PATH, that lets you process the base cluster's data records using the alternate key to
locate them. The alternate index, path, and base cluster are defined in the same catalog, USERCAT.

//DEFAIX1 JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE ALTERNATEINDEX -
 (NAME(EXAMPLE.AIX) -
 RELATE(EXAMPLE.KSDS2) -
 KEYS(3 0) -
 RECORDSIZE(40 50) -
 VOLUMES(VSER01) -
 CYLINDERS(3 1) -
 NONUNIQUEKEY -
 UPGRADE) -
 CATALOG(USERCAT)
/*

The DEFINE ALTERNATEINDEX command creates an alternate index entry, a data entry, and an index
entry to define the alternate index EXAMPLE.AIX. The DEFINE ALTERNATEINDEX command also obtains
space for the alternate index from one of the VSAM data spaces on volume VSER01, and allocates three
cylinders for the alternate index's use. The parameters are:

• NAME indicates that the alternate index's name is EXAMPLE.AIX.
• RELATE identifies the alternate index's base cluster, EXAMPLE.KSDS2.
• KEYS identifies the length and location of the alternate key field in each of the base cluster's data

records. The alternate key field is the first three bytes of each data record.
• RECORDSIZE specifies that the alternate index's records are variable length, with an average size of 40

bytes and a maximum size of 50 bytes.
• VOLUMES indicates that the alternate index is to reside on volume VSER01. This example assumes that

the volume is already cataloged in the user catalog, USERCAT.
• CYLINDERS allocates three cylinders for the alternate index's space. The alternate index is extended in

increments of one cylinder.
• NONUNIQUEKEY specifies that the alternate key value might be the same for two or more data records

in the base cluster.
• UPGRADE specifies that the alternate index is opened by VSAM and upgraded each time the base

cluster is opened for processing.
• CATALOG defines the alternate index in the user catalog, USERCAT.

DEFINE ALTERNATEINDEX command

88 z/OS: z/OS DFSMStvs Administration Guide

Define an alternate index with RECATALOG: Example 4

In this example, an alternate index is redefined into a catalog:

//DEFAIXR JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE ALTERNATEINDEX -
 (NAME(DEFAIXR.AIX01) -
 RELATE(DEFKSDS.KSDS03) -
 CYLINDERS(2 1) -
 VOLUMES(333001) -
 RECATALOG) -
 CATALOG(USERCAT4)
/*

This DEFINE ALTERNATEINDEX command recatalogs an alternate index entry, a data entry, and an index
entry to redefine the alternate index, DEFAIXR.AIX01. The VSAM volume record (VVR) entry and the
corresponding VTOC entry for the alternate index must exist. Only the catalog entry is recataloged, so no
space is allocated. The command's parameters are:

• NAME indicates the alternate index's name, DEFAIXR.AIX01.
• RELATE identifies the alternate index base cluster, DEFKSDS.KSDS03.
• CYLINDERS allocates two cylinders for the alternate index's space. The alternate index is extended in

increments of one cylinder.
• VOLUMES places the alternate index on volume 333001. This example assumes that a VTOC entry

already exists for this object.
• RECATALOG recatalogs the alternate index and uses the existing VVR entry and VTOC entry.
• CATALOG defines the alternate index in the user catalog, USERCAT4.

Defining attributes for clusters and cluster components
Using access method services, you can set up jobs to execute a sequence of commands with a single
invocation of IDCAMS. Model command execution is based on the success or failure of prior commands.

Use DEFINE CLUSTER to define attributes for the cluster as a whole and for the components of the
cluster. The syntax of the DEFINE CLUSTER command follows:

• DEFINE CLUSTER (parameters)

– [DATA(parameters)]
– [INDEX(parameters)]
– [CATALOG(subparameters)]

The syntax of the DEFINE CLUSTER command.

Command Parameters

DEFINE CLUSTER

 (NAME(entryname)

 {CYLINDERS(primary[secondary])|

 KILOBYTES(primary[secondary])|

 MEGABYTES(primary[secondary])|

 RECORDS(primary[secondary])|

 TRACKS(primary[secondary])}

 VOLUMES(volser[volser...])

DEFINE CLUSTER command

Chapter 2. Administering resources for DFSMStvs 89

The syntax of the DEFINE CLUSTER command. (continued)

Command Parameters

 [ACCOUNT(account–info)]

 [BUFFERSPACE(size)]

 [BWO(TYPECICS|TYPEIMS|NO)]

 [CONTROLINTERVALSIZE(size)]

 [DATACLASS(class)]

 [ERASE|NOERASE]

 [EXCEPTIONEXIT(entrypoint)]

 [FILE(ddname)]

 [FREESPACE(CI-percent[&cont; CA-percent]|0 0)]

 [FRLOG(NONE[| &cont; REDO])]

 [INDEXED|LINEAR|NONINDEXED|NUMBERED]

 [KEYS(length offset|&cont; 64 0]

 [LOG(NONE|UNDO|ALL)]

 [LOGSTREAMID(logstream)]

 [MANAGEMENTCLASS(class)]

 [MODEL(entryname[catname])]

 [OWNER(ownerid)]

 [RECATALOG|NORECATALOG]

 [RECORDSIZE(average maximum)]

 [REUSE|NOREUSE]

 [SHAREOPTIONS(crossregion[&cont; crosssystem]|1 3)]

 [SPANNED|NONSPANNED]

 [SPEED|RECOVERY]

 [STORAGECLASS(class)]

 [TO(date)|FOR(days)]

 [WRITECHECK|NOWRITECHECK])

[DATA (

 {CYLINDERS(primary[secondary])|

 KILOBYTES(primary[secondary])|

 MEGABYTES(primary[secondary])|

 RECORDS(primary[secondary])|

 TRACKS(primary[secondary])}

 [VOLUMES(volser[volser...])]

 [BUFFERSPACE(size)]

 [CONTROLINTERVALSIZE(size)]

 [ERASE|NOERASE]

DEFINE CLUSTER command

90 z/OS: z/OS DFSMStvs Administration Guide

The syntax of the DEFINE CLUSTER command. (continued)

Command Parameters

 [EXCEPTIONEXIT(entrypoint)]

 [FILE(ddname)]

 [FREESPACE(CI-percent[&cont; CA-percent])]

 [KEYS(length offset)]

 [MODEL(entryname[catname])]

 [NAME(entryname)]

 [OWNER(ownerid)]

 [RECORDSIZE(average maximum)]

 [REUSE|NOREUSE]

 [SHAREOPTIONS(crossregion[&cont; crosssystem])]

 [SPANNED|NONSPANNED]

 [SPEED|RECOVERY]

 [WRITECHECK|NOWRITECHECK])]

[INDEX (

 {CYLINDERS(primary[secondary])|

 KILOBYTES(primary[secondary])|

 MEGABYTES(primary[secondary])|

 RECORDS(primary[secondary])|

 TRACKS(primary[secondary])}

 [VOLUMES(volser[volser...])]

 [CONTROLINTERVALSIZE(size)]

 [EXCEPTIONEXIT(entrypoint)]

 [FILE(ddname)]

 [MODEL(entryname&cont; [catname])]

 [NAME(entryname)]

 [OWNER(ownerid)]

 [REUSE|NOREUSE]

 [SHAREOPTIONS(crossregion[&cont; crosssystem])]

 [WRITECHECK|NOWRITECHECK])]

[CATALOG(catname)]

DEFINE Abbreviation: DEF

A sequence of commands commonly used in a single job step includes DELETE––DEFINE––REPRO or
DELETE––DEFINE––BLDINDEX. You can specify either a DD name or a data set name with these
commands. When you refer to a DD name, however, allocation occurs at job step initiation. This could
result in a job failure if a command such as REPRO follows a DELETE––DEFINE sequence that changes

DEFINE CLUSTER command

Chapter 2. Administering resources for DFSMStvs 91

the location (volser) of the data set. A failure can occur with either SMS-managed data sets or non-SMS-
managed data sets.

Attention: IBM does not recommend doing a delete and define for the same data set inside a single step,
or even in the same job, with DFSMStvs. The delete throws up an exclusive ENQ that is not released until
the job terminates. This is not a problem most of the time because the job owns the ENQ, so it has no
trouble allocating the data set. If, however, the unit of recovery ended up in backout for any reason, TVS
would be unable to allocate the data set, and the UR would be shunted.

To avoid potential failures with a model command sequence in your IDCAMS job, take either of the
following actions:

• Specify the data set name instead of the DD name
• Use a separate job step to perform any sequence of commands that follow a DEFINE command (for

example, REPRO, IMPORT, BLDINDEX, PRINT, or EXAMINE).

Recommendation: DB2 uses the access method services DEFINE CLUSTER command for STOGROUP-
defined data sets. This can result in performance problems for partitioned table spaces if multiple
partitions are defined on the same volume. DB2 uses software striping on partitioned table spaces to
improve performance of sequential queries. The throughput is then gated by the data delivery capability
of each volume. Because each partition is a separate data set, you can be avoid this problem by allocating
all the partitions in a single JCL step in an IEFBR14 (not IDCAMS) job; for details, see z/OS DFSMS Using
Data Sets. Allocating all the partitions in this manner works if enough volumes are available with the
requested space quantity in a single SMS storage group to satisfy all the partitions.

Restriction: If you specify IMBED, KEYRANGES, ORDERED, or REPLICATE, it will be ignored.

DEFINE CLUSTER parameters

The DEFINE CLUSTER command uses the following required and optional parameters.

Required parameters
CLUSTER

Defines or recatalogs a cluster or cluster entry.

Parameters that follow the CLUSTER keyword are specified for the cluster as a whole. These
parameters are enclosed in parentheses and, optionally, are followed by parameters given separately
for the DATA and INDEX components.

Abbreviation: CL

NAME(entryname)
Defines the cluster's entryname or the name of each of its components. The entryname used for the
cluster as a whole is not propagated to the cluster's components.

For SMS and non-SMS-managed clusters, the component names must resolve to the same catalog as
the data set's cluster name.

You can define a separate entryname for the cluster, its data component, and its index component. If
no name is specified for the data or index component, a name is generated. When the cluster, data
component, and index component are individually named, each can be addressed. For information on
system-generated names, see z/OS DFSMS Using Data Sets.

When you define a VSAM volume data set (VVDS), the entryname for the cluster or the data
component must be in the form SYS1.VVDS.Vvolser, in which volume serial number is the volume
serial number specified by the VOLUMES parameter. The default primary and secondary allocation is
10 tracks. For information on defining a VVDS, see z/OS DFSMS Managing Catalogs.

CYLINDERS(primary[secondary])|

KILOBYTES(primary[secondary])|

DEFINE CLUSTER command

92 z/OS: z/OS DFSMStvs Administration Guide

MEGABYTES(primary[secondary])|

RECORDS(primary[secondary])|

TRACKS(primary[secondary])|
Specifies the amount of space in cylinders, kilobytes, megabytes, records, or tracks allocated to the
cluster from the volume's available space. A kilobyte or megabyte allocation resolves to either tracks
or cylinders; record allocation resolves to tracks. For more information, see z/OS DFSMS Using Data
Sets.

Requests for space are directed to DADSM and result in a format-1 DSCB for all entries.

If the cluster is not SMS-managed, you must use the amount of space allocated, either through this
parameter, or through the DATACLASS, MODEL, or RECATALOG parameters. This parameter is
optional if the cluster is managed by SMS. If it is used, it overrides the DATACLASS space
specification. If it is not used, it can be modeled or defaulted by SMS. If it cannot be determined, the
DEFINE is unsuccessful.

If you select KILOBYTES or MEGABYTES, the amount of space allocated is the minimum number of
tracks or cylinders required to contain the specified number of kilobytes or megabytes.

If you select RECORDS, the amount of space allocated is the minimum number of tracks that are
required to contain the given number of records. The maximum number of records is 16,777,215. If
RECORDS is specified for a linear data set, space is allocated with the number of control intervals
equal to the number of records.

To maintain device independence, do not use the TRACKS or CYLINDERS parameters. If you use them
for an SMS-managed data set, space is allocated on the volumes selected by SMS in units equivalent
to the device default geometry. If there is an allocation failure due to lack of space, SMS retries
allocation with a reduced space quantity. However, any retry, including reduced space quantity, is
only attempted if Space Constraint Relief = Y is specified. SMS also removes other limitations if the
data class allows space constraint relief.

Regardless of the allocation type, the calculation of the CA (control area) size is based on the smaller
of the two allocation quantities (primary or secondary) in the DEFINE command. A CA is never greater
than a single cylinder, it might be less (that is, some number of tracks), depending on the allocation
amount and type used. When tracks or records are used, the space allocation unit (the CA size) can be
adjusted to one cylinder. This adjustment is made if the calculated CA size contains more tracks than
exist in a single cylinder of the device being used. The CA area size assigned by VSAM is the smallest
of:

• One cylinder
• The primary space quantity
• The secondary space quantity

If the CA size assigned is not evenly divisible into either the primary or secondary space quantity,
VSAM increases that space to a value evenly divisible by the CA size. If you are defining an extended
format data set, you should review "Defining an Extended Format Key-Sequenced Data Set" in z/OS
DFSMS Using Data Sets for information about additional space requirements.

DEFINE RECORDS allocates sufficient space to the specified number of records, but factors unknown
at define time (such as key compression or method of loading records) can result in inefficient use of
the space allocated. This might prevent every data CA from being completely used, and you might be
unable to load the specified number of records without requiring secondary allocation.

When multiple volumes are used for a data set, these rules and conditions apply:

• The first volume is defined as the prime volume. The initial allocation of a data set is on the prime
volume. The remaining volumes are defined as candidate volumes.

• A data set's primary space allocation (defined for each data set) is the amount of space initially
allocated on both the prime volume and on any candidate volumes the data set extends to.

DEFINE CLUSTER command

Chapter 2. Administering resources for DFSMStvs 93

• A data set's secondary space allocation (if it is defined) is the space allocated when the primary
space is filled and the data set needs additional space on the same volume.

• If a data set extends to a candidate volume, the amount of space initially allocated on the candidate
volume is the primary space allocation. If the data set extends beyond the primary allocation on the
candidate volume, then the amount of space allocated is the secondary space allocation.

• With a DEFINE request, the primary space allocation must be fulfilled in five DASD extents unless
the Space Constraint Relief option is specified in the associated SMS data class.

However, the request is not successful if you do not fulfill each secondary space allocation in five
DASD extents.

A DASD extent is the allocation of one available area of contiguous space on a volume. For example,
if a data set's primary space allocation is 100 cylinders, you must allocate a maximum of five DASD
extents that add up to 100 cylinders.

Secondary amounts can be allocated on all volumes available to contain parts of the cluster
regardless of the key ranges.

You can specify the amount of space as a parameter of CLUSTER, as a parameter of DATA, or as a
parameter of both. When a key-sequenced cluster is being defined, and the space is a parameter of:

• CLUSTER, the amount is divided between the data and index components. The division algorithm is
a function of control interval size, record size, device type, and other data set attributes.

If the division results in an allocation for the data component that is not an integral multiple of the
required control area size, the data component's allocation is rounded up to the next higher control
area multiple. This rounding can result in a larger total allocation for your cluster.

• DATA, the entire amount specified is allocated to the data component. An additional amount of
space, depending on control interval size, record size, device type, and other data set attributes, is
allocated to the index component.

To determine the exact amount of space allocated to each component, list the cluster's catalog entry,
using the LISTCAT command.

The primary and each secondary allocation must be able to be satisfied in five DASD extents;
otherwise, your DEFINE or data set extension is unsuccessful.
primary

Allocates the initial amount of space to the cluster.
secondary

Allocates an amount of space each time the cluster extends, as a secondary extent. You can use
this secondary allocation to add space for the data or index components of the cluster. A VSAM
data set can be expanded to 123 extents per volume. If this is a multi-volume VSAM data set, then
the VSAM component can be extended to a maximum of 255 extents combined over all volumes.

VOLUMES(volser[volser...])
Specifies the volumes on which a cluster's components are to have space. If you do not use the
MODEL parameter, or if the cluster is not SMS-managed, VOLUMES must be used either as a
parameter of CLUSTER, or as a parameter of both DATA and INDEX.

VOLUMES can be specified or modeled for a data set that is to be SMS-managed; know that the
volumes specified might not be used and result in an error. See z/OS DFSMSdfp Storage
Administration for information about SMS volume selection.

Volumes are always allocated in the order specified. If there is not enough space on the volume, the
allocation is not successful. For non-SMS-managed data sets, the primary space is allocated on the
first volume in the list. When you extend the data set because the first allocation is full, the volumes
are used in the order in which they appeared in the DEFINE command.

Letting SMS select the volume from the storage group reduces the chances of allocation errors caused
by insufficient space. If the data set is SMS-managed with guaranteed space, SMS places the primary
quantity on all the volumes with sufficient space for later extensions. If the SMS-managed data set
does not have guaranteed space or is a key range data set, primary space is allocated only on the first

DEFINE CLUSTER command

94 z/OS: z/OS DFSMStvs Administration Guide

volume. For SMS-managed VSAM data sets, the primary space might be allocated on a different
volume from the one you specified.

You can let SMS choose the volumes for SMS-managed data sets by coding an * for the volser with the
VOLUMES parameter. If both user-specified and SMS-specified volumes are requested, the user-
specified volser must be input first in the command syntax. The default is one volume.

For SMS-managed and non-SMS-managed data sets, you can specify up to 59 volume serial numbers.
If the combined number of volumes for a cluster and its associated alternate indexes exceeds 59,
unpredictable results can occur.

If the data and index components are to reside on different device types, you must specify VOLUMES
as a parameter of both DATA and INDEX. If more than one volume is listed with a single VOLUMES
parameter, the volumes must be of the same device type.

For SMS-managed data sets, if you want the data and index components to be on separate volumes
for nonguaranteed-space storage-class requests, code two different dummy names in the VOLUME
parameter for each component. If there are not enough volumes in the storage group to satisfy this
requirement, the allocation will fail.

If a guaranteed-space storage class is assigned to the data sets (cluster) and volume serial numbers
are used, space is allocated on all specified volumes if the following conditions are met:

• All defined volumes are in the same storage group.
• The storage group to which these volumes belong is in the list of storage groups selected by the ACS

routines for this allocation.
• The data set is not a key range data set.

The volume serial number is repeated in the list only if the KEYRANGE parameter is used. You can use
this to have more than one key range on the same volume. Repetition is valid when duplicate
occurrences are used for the primary allocation of some key range.

If a VVDS is being defined, only one volume can be specified and that volume serial number must be
reflected in the name indicated in the NAME parameter.

The VOLUMES parameter interacts with other DEFINE CLUSTER parameters. Ensure that the volume
you give for the cluster is consistent with the cluster's other attributes:

• FILE: The volume information supplied with the DD statement pointed to by FILE must be
consistent with the information specified for the cluster and its components.

AbbreviationsCYL, KB, MB, REC, TRK

Abbreviation: VOL

Optional parameters

The DEFINE CLUSTER command can execute the following optional parameters.

ACCOUNT(account–info)
Defines up to 32 bytes of accounting information and user data for the data set. It must be between 1
and 32 bytes; otherwise, you will receive an error message.
account–info

Is supported only for SMS-managed VSAM and non–VSAM data sets. It is used only for the data
set level (not member level) of PDSE/PDS.

Abbreviation: ACCT

BUFFERSPACE(size)
Specifies the minimum space for buffers. The buffer space size helps VSAM determine the data
component's and index component's control interval size. If BUFFERSPACE is not coded, VSAM
attempts to get enough space to contain two data component control intervals and, if the data is key
sequenced, one index component control interval.

DEFINE CLUSTER command

Chapter 2. Administering resources for DFSMStvs 95

If the data set being defined is a KSDS, and the BUFFERSPACE specified is not large enough to contain
two data and one index CI's, VSAM increases the specified buffer space and completes the define.
VSAM also increases index CISIZE and, if necessary, increases the buffer space to accommodate the
larger index CISIZE.
size

Is the space for buffers. Size can be given in decimal (n), hexadecimal (X'n'), or binary (B'n') form,
but must not exceed 16,776,704.

The size cannot be less than enough space to contain two data component control intervals and, if
the data is key sequenced, one index control interval. If size is too small for VSAM buffers, VSAM
ends your DEFINE and provides an appropriate error message.

Note: The BUFFERSPACE setting is ignored when the data set is opened for VSAM RLS or DFSMStvs
mode.

Abbreviations: BUFSP or BUFSPC

BWO(TYPECICS|TYPEIMS|NO)
Use this parameter if backup-while-open (BWO) is allowed for the VSAM sphere. BWO applies only to
SMS data sets and cannot be used with TYPE(LINEAR). If BWO, LOG, or LOGSTREAMID is specified (or
an RLS cell exists for the data set), access from DFSMS/MVS 1.2 or a lower-level system is denied.

If BWO is specified in the SMS data class, the specified BWO value is used as part of the data set
definition, unless BWO was previously defined with an explicitly specified or modeled DEFINE
attribute.
TYPECICS

Use TYPECICS to specify BWO in a CICS or DFSMStvs environment. For RLS processing, this
activates BWO processing for CICS or DFSMStvs, or both. For non-RLS processing, CICS
determines whether to use this specification or the specification in the CICS FCT. For more
information about the use of TYPECICS, see z/OS DFSMSdfp Storage Administration and CICS
Transaction Server for z/OS (www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html).

Exception: If CICS determines that it will use the specification in the CICS FCT, the specification
might override the TYPECICS parameter for CICS processing.

Abbreviation: TYPEC

TYPEIMS
Enables BWO processing for IMS data sets. You can use this capability only with DFSMS 1.3 or
higher-level DFSMS systems. If you attempt to open a cluster that has the TYPEIMS specification
of a DFSMS 1.2 (or lower-level) system, the open will not be successful.

Abbreviation: TYPEI

NO
Use this when BWO does not apply to the cluster.

Exception: If CICS determines that it will use the specification in the CICS FCT, the specification
might override the NO parameter for CICS processing.

CATALOG(catname)
Identifies the catalog in which the cluster is to be defined.

Before you can specify catalog names for SMS-managed data sets, you must have authority for the
RACF STGADMIN.IGG.DIRCAT facility class. For the order in which catalogs are selected and more
information, see z/OS DFSMS Access Method Services Commands.
catname

Is the name of the catalog in which the entry is to be defined.

If the catalog's volume is physically mounted, it is dynamically allocated. The volume must be
mounted as permanently resident or reserved.

Abbreviation: CAT

DEFINE CLUSTER command

96 z/OS: z/OS DFSMStvs Administration Guide

http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html

CONTROLINTERVALSIZE(size)
Specifies the size of the control interval for the cluster or component.

For linear data sets, the specified value in bytes is rounded up to a 4K multiple, up to a maximum of
32K. If the size is not specified, the value specified in the data class that is assigned to the data set is
used. Otherwise a default value of 4K is used.

If CONTROLINTERVALSIZE is given on the cluster level, it propagates to the component level at which
no CONTROLINTERVALSIZE has been specified.

The size of the control interval depends on the maximum size of the data records and the amount of
buffer space you provide.

LSR/GSR buffering technique users can ensure buffer pool selection by explicitly defining data and
index control interval sizes.

If CONTROLINTERVALSIZE is not coded, VSAM determines the size of control intervals. VSAM selects
a control interval size for the data component that will optimize direct access storage usage. It will
then select an index control interval size based on the number of data control intervals in the data
control area.
size

Indicates a cluster's data and index component size.

If SPANNED is not used, the size of a data control interval must be at least 7 bytes larger than the
maximum record length.

If the control interval specified is less than maximum record length plus a 7-byte overhead, VSAM
increases the data control interval size to contain the maximum record length plus the needed
overhead.

If SPANNED is specified, the control interval size can be less than the maximum record length.
You can select a size from 512 to 8K in increments of 512, or from 8K to 32K in increments of 2K.
When you choose a size that is not a multiple of 512 or 2048, VSAM chooses the next higher
multiple. For a linear data set, the size specified is rounded up to 4096 if specified as 4096 or less.
It is rounded to the next higher multiple of 4096 if specified as greater than 4096.

The size of the index control interval is the number of data control intervals in a data control area that
need indexing at the sequence set level of the index component. The size of each entry depends on an
average compression value for a user key. The keys will compress to 1/3 of the length of the actual
key value. In some cases, the general compressed key length on which the algorithm is based will be
affected by the actual values and ordering of the user key. The result is that each entry can occupy
more space in the index record than that provided. This may result in additional control area splits and
in all cases, wasted space in the data set. If after loading the data sets, this condition exists; noted by
more than anticipated space to store the data set on the direct access device. You should increase the
index control interval size. The size can be increased incrementally until it is felt that this condition no
longer exists. The guideline formula documented in the past is as follows:

(KEYLEN/2) * DATA CI/CA less than or equal to INDEX CISIZE.

You should be aware that this is only a guideline and does not take into account the actual algorithm
for determining the index control interval size requirement. However, the 2:1 compression of key
length in this formula provides some additional overhead over the actual 3:1 formula used during the
actual algorithm. Using this formula can result in an index control interval size that is too large. This
may increase I/O transfer time for each index component record, or it may be too small to address
these conditions.

For a discussion of control interval size and physical block size, see z/OS DFSMS Using Data Sets.

Abbreviation: CISZ or CNVSZ

DATACLASS(class)
Identifies the name, 1 to 8 characters, of the data class for the data set. It provides the allocation
attributes for new data sets. Your storage administrator defines the data class. However, you can
override the parameters defined for DATACLASS by explicitly using other attributes. See z/OS DFSMS

DEFINE CLUSTER command

Chapter 2. Administering resources for DFSMStvs 97

Access Method Services Commands for the order of precedence (filtering) the system uses to select
which attribute to assign.

DATACLASS parameters apply to both SMS-managed and non-SMS-managed data sets. If
DATACLASS is specified and SMS is inactive, DEFINE is unsuccessful.

DATACLASS cannot be used as a subparameter of DATA or INDEX.

Abbreviation: DATACLAS

ERASE|NOERASE
Specifies whether the cluster's components are to be erased when its entry in the catalog is deleted.

ERASE
Overwrites each component of the cluster with binary zeros when its catalog entry is deleted. If the
cluster is protected by a RACF generic or discrete profile and is cataloged in an integrated catalog
facility catalog, you can use RACF commands to specify an ERASE attribute. If you do this, the data
component is automatically erased upon deletion.

Abbreviation: ERAS

NOERASE
Specifies that each component of the cluster is not to be overwritten with binary zeros. NOERASE will
not prevent erasure if the cluster is protected by a RACF generic or discrete profile that specifies the
ERASE attribute and if the cluster is cataloged in a catalog. Use RACF commands to alter the ERASE
attribute in a profile.

Abbreviation: NERAS

EXCEPTIONEXIT(entrypoint)
Specifies the name of a user-written exception-exit routine, that receives control when an exceptional
I/O error condition occurs during the transfer of data between your program's address space and the
cluster's DASD space. An exception is any condition that causes a SYNAD exit to be taken. The
component's exception-exit routine is processed first, then the user's SYNAD exit routine receives
control. If an exception-exit routine is loaded from an unauthorized library during access method
services processing, an abnormal termination occurs. See z/OS DFSMS Using Data Sets.

Abbreviation: EEXT

FILE(ddname)
Names the DD statement that identifies and allocates the DASD and volumes that must be available
for space allocation on the volumes specified by the VOLUMES keyword. If more than one volume is
specified, all volumes must be the same device type.

If data and index components are to reside on separate devices, you can specify a separate FILE
parameter as a parameter of DATA and INDEX to point to different DD statements.

If the FILE parameter is not specified, an attempt is made to dynamically allocate the required
volumes. The volume must be mounted as permanently resident or reserved. When the FILE
parameter is used, the specified volumes are directly allocated before access method services gets
control.

An example DD statement is:

 //ddname DD UNIT=(devtype[,unitcount]),
 // VOL=SER=(volser1,volser2,volser,...),DISP=OLD

Restriction: When FILE refers to more than one volume of the same device type, the DD statement
that describes the volumes cannot be a concatenated DD statement.

FREESPACE(CI-percent[&cont; CA-percent]|0 0)
Specifies the percentage of each control interval and control area to be set aside as free space when
the cluster is initially loaded or when a mass insert is done. CI-percent is a percentage of the amount
of space to be preserved for adding new records and updating existing records with an increase in the

DEFINE CLUSTER command

98 z/OS: z/OS DFSMStvs Administration Guide

length of the record. Since a CI is split when it becomes full, the CA might also need to be split when it
is filled by CIs created by a CI split. The empty space in the control interval and control area is
available for data records that are updated and inserted after the cluster is initially loaded. This
parameter applies only to key-sequenced clusters, and variable-length relative records with variable-
length records. CI-percent is the number of bytes that is equal to, or slightly less than, the percentage
value of CI-percent. CA-percent is the number of control intervals equal to, or less than, the
percentage of CA-percent.

CI-percent and CA-percent must be equal to, or less than, 100. When you use FREESPACE(100 100),
one data record is placed in each control interval used for data. One control interval in each control
area is used for data (that is, one data record is stored in each control area when the data set is
loaded). If you do not use FREESPACE, the default reserves no free space when the data set is loaded.

When you define the cluster using the RECORDS parameter, the amount of free space specified is not
considered in the calculations to determine primary allocation.

Abbreviation: FSPC

FRLOG(NONE|REDO)
Specifies that VSAM batch logging can be performed for your VSAM data set. VSAM batch logging is
available with CICS VSAM Recovery V3R1.

There is no default value for FRLOG. If FRLOG is left out, the data set cannot be used for VSAM batch
logging. See the ALTER command for enabling VSAM batch logging after a data set is created.

NONE
Indicates that the data set can be used for VSAM batch logging. However, the function should be
disabled. The LOGSTREAMID parameter indicates changes that are made by applications that are
written to the MVS log stream. Specifying FRLOG(NONE) implies that you can use the data set for
RLS processing; omitting it indicates that RLS processing will not occur.

REDO
Enables the VSAM batch logging function for your VSAM data set. The LOGSTREAMID parameter
indicates changes that are made by applications that are written to the MVS log stream. When
specifying FRLOG(REDO), you must also specify LOGSTREAMID.

Restrictions:

1. If you do not want VSAM batch logging for your data set, do not specify the FRLOG parameter.
If you specify FRLOG(NONE), the data set must support VSAM batch logging, but logging is not
in effect.

2. If FRLOG is specified, the following restrictions apply:

• The data set must be SMS-managed.
• The data set cannot be a linear or temporary data set.

INDEXED|LINEAR|NONINDEXED|NUMBERED
Shows the type of data organization for the cluster.

If you want a data organization other than INDEXED (the default), you must explicitly use it with this
parameter.

When a cluster is defined, you indicate whether the data is to be indexed (key sequenced),
nonindexed (entry sequenced), numbered (relative record), or linear.

Certain parameters apply only to key-sequenced clusters, as noted in the description of each of these
parameters.

Linear data set clusters are treated as ESDS clusters that must be processed using control interval
access.

If you do not choose either the data organization or the MODEL parameter, your cluster defaults to
key-sequenced (indexed).

If you want to define an entry-sequenced or a relative record cluster, you must specify the
NONINDEXED, the NUMBERED, or the MODEL parameter.

DEFINE CLUSTER command

Chapter 2. Administering resources for DFSMStvs 99

The data organization you select must be consistent with other parameters you specify.
INDEXED

Shows that the cluster being defined is for key-sequenced data. If INDEXED is specified, an index
component is automatically defined and cataloged. The data records can be accessed by key or by
relative-byte address (RBA).

Abbreviation: IXD

LINEAR
Specifies that the cluster being defined is for linear data. Because linear data set clusters are
treated as ESDS clusters that must be processed using control interval access, you can use most
of the commands and parameters you use to manipulate ESDS clusters. There are two exceptions:

• Parameters that refer to logical records are not allowed (except RECORDS).
• Use partial printing by specifying the RBA syntax.

Space is allocated for a linear data set with the number of control intervals equal to the number of
records.

Restriction: Linear data sets cannot be accessed for VSAM RLS or DFSMStvs processing. The LOG,
LOGSTREAMID, and BWO parameters do not apply to linear data sets.

Abbreviation: LIN

NONINDEXED
Indicates that the cluster being defined is for entry-sequenced data. The data records can be
accessed sequentially or by relative-byte address (RBA).

Abbreviation: NIXD

NUMBERED
Specifies that the cluster's data organization is for relative record data. A relative record cluster,
which is similar to an entry-sequenced cluster, has fixed-length records or variable-length records
that are stored in slots. The RECORDSIZE parameter determines if the records are fixed-length or
variable-length. Empty slots hold space for records to be added later. The data records are
accessed by relative record number (slot number).

Abbreviation: NUMD

KEYS(length offset|64 0)
gives information about the prime key field of a key-sequenced data set's data records.

This parameter overrides any KEYS specification in the DATACLASS parameter.

This parameter applies only to key-sequenced clusters. The default is a key field of 64 bytes,
beginning at the first byte (byte 0) of each data record.

The key field of the cluster's index is called the prime key to distinguish it from other keys, called
alternate keys. See “Defining alternate indexes” on page 74 for more details on how to choose
alternate indexes for a cluster.

When the data record spans control intervals, the record's key field must be within the part of the
record that is in the first control interval.
length offset

Specifies the length of the key and its displacement (in bytes) from the beginning of the record.
The sum of length plus offset cannot exceed the length of the shortest record. The length of the
key can be 1 to 255 bytes.

DEFINE CLUSTER command

100 z/OS: z/OS DFSMStvs Administration Guide

LOG(NONE|UNDO|ALL)
Establishes whether the sphere to be accessed with VSAM RLS or DFSMStvs is recoverable or
nonrecoverable. It also indicates whether a forward recovery log is available for the sphere. LOG
applies to all components in the VSAM sphere. VSAM uses LOG in the following way:

Nonrecoverable Sphere
The sphere is considered nonrecoverable if LOG(NONE) is specified. VSAM allows concurrent read
and update sharing across multiple resource managers and other applications.

Recoverable Sphere
The sphere is considered recoverable if LOG(UNDO) or LOG(ALL) is specified. For a recoverable
sphere, VSAM does not allow applications that do not support commit and backout to open a data
set in the sphere for output using RLS access, but applications can open the sphere for output
using DFSMStvs access. The applications can, however, open the sphere for RLS access for input
processing only.

If the LOG parameter is not specified, the value in the catalog is undefined. RLS and DFSMStvs OPEN
of the data set is not allowed unless the LOG parameter has been specified.

If BWO, LOG, or LOGSTREAMID is specified (or an RLS cell exists for the data set), access from
DFSMS/MVS 1.2 or lower-level systems is denied.

If LOG is specified in the SMS data class, the value defined is used as the data set definition, unless it
has been previously defined with an explicitly specified or modeled DEFINE attribute.

LOG cannot be used with LINEAR.

LOGSTREAMID cannot be used with LINEAR.
NONE

Indicates that neither an external backout nor a forward recovery capability is available for the
sphere accessed in VSAM RLS or DFSMStvs mode. If you use LOG(NONE), RLS and DFSMStvs
consider the sphere to be nonrecoverable.

UNDO
Specifies that changes to the sphere accessed in VSAM RLS or DFSMStvs mode can be backed out
using an external log. RLS and DFSMStvs consider the sphere to be recoverable when you use
LOG(UNDO).

ALL
Specifies that changes to the sphere accessed in RLS and DFSMStvs mode can be backed out and
forward recovered using external logs. DFSMStvs and RLS consider the sphere recoverable when
you use LOG(ALL). When you specify LOG(ALL), you must also specify the LOGSTREAMID
parameter.

VSAM RLS and DFSMStvs allow concurrent read or update sharing for nonrecoverable spheres
through commit (CICS) and noncommit protocol applications. For a recoverable sphere, a
noncommit protocol application must use DFSMStvs to be able to open the sphere for update
using RLS access.

LOGSTREAMID(logstream)
Gives the name of the forward recovery log stream. It applies to all components in the VSAM sphere.
This parameter is used when the cluster is accessed with MACRF=RLS.

If BWO, LOG, or LOGSTREAMID is specified (or an RLS cell exists for the data set), access from
DFSMS/MVS 1.2 or lower-level systems is denied.

If LOGSTREAMID is specified in the SMS data class, the value defined is used as the data set
definition, unless it has been previously defined with an explicitly specified or modeled DEFINE
attribute.
logstream

Is the name of the forward recovery log stream. This can be a fully qualified name up to 26
characters, including separators. If LOG(ALL) is specified, LOGSTREAMID(name) must be

DEFINE CLUSTER command

Chapter 2. Administering resources for DFSMStvs 101

specified. For information about defining log streams for CICS use, see CICS Transaction Server
for z/OS (www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html).

Abbreviation: LSID

Note: LOGSTREAMID cannot be used with LINEAR.

MANAGEMENTCLASS(class)
For SMS-managed data sets, specifies the name, 1 to 8 characters, of the management class for a
new data set. Your storage administrator defines the names of the management classes you can use.
If MANAGEMENTCLASS is not used, but STORAGECLASS is used or defaulted, MANAGEMENTCLASS is
derived from automatic class selection (ACS). If MANAGEMENTCLASS is specified and
STORAGECLASS is not specified or derived, the DEFINE is unsuccessful. If SMS is inactive and
MANAGEMENTCLASS is specified, the DEFINE will be unsuccessful. MANAGEMENTCLASS cannot be
listed as a subparameter of DATA or INDEX.

Abbreviation: MGMTCLAS

MODEL(entryname[catname])
Specifies an existing entry to be used as a model for the entry being defined. See z/OS DFSMS Access
Method Services Commands for information on how the system selects modeled attributes.

A VVDS cannot be modeled.

The DATACLASS, MANAGEMENTCLASS, and STORAGECLASS attributes are not modeled.

You can use an existing cluster's entry as a model for the attributes of the cluster being defined. For
details about how a model is used, see z/OS DFSMS Managing Catalogs.

You can use some attributes of the model and override others by explicitly specifying them in the
definition of the cluster or component. If you do not want to add or change any attributes, you need
specify only the entry type (cluster, data, or index) of the model to be used and the name of the entry
to be defined.

See z/OS DFSMS Access Method Services Commands for more information about the order in which
the system selects an attribute.

When you use a cluster entry as a model for the cluster, the data and index entries of the model
cluster are used as models for the data and index components of the cluster still to be defined, unless
another entry is specified with the MODEL parameter as a subparameter of DATA or INDEX.
entryname

Specifies the name of the cluster or component entry to be used as a model.
catname

Names the model entry's catalog. You identify the catalog that contains the model entry if the
model entry's catalog is not identified with a JOBCAT or STEPCAT DD statement, and is not the
master catalog.

If a catalog's volume is physically mounted, it is dynamically allocated. The volume must be
mounted as permanently resident or reserved. For information about the order in which a catalog
is selected when the catalog name is not specified, see z/OS DFSMS Access Method Services
Commands.

FRLOG(NONE|REDO)
Option to request that VSAM interface with CICSVR to log changed data to an MVS Log Stream.
The log data and a previous HSM backup can be used for forward recovery.
NONE

Specifies that the forward recovery capability is not available for the sphere.
REDO

Specifies that the forward recovery capability is available for the sphere. Batch logging is
supported for NSR, LSR, and GSR and does not require modification of application programs.
When you specify FRLOG(REDO), you must also specify the LOGSTREAMID parameter.

Note:

DEFINE CLUSTER command

102 z/OS: z/OS DFSMStvs Administration Guide

http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html
http://www.ibm.com/support/knowledgecenter/SSGMGV/welcome.html

1. FRLOG cannot be used with LINEAR.
2. This support is available with CICSVR 2.4

OWNER(ownerid)
identifies the cluster's owner.

For TSO/E users, if the owner is not identified with the OWNER parameter, the TSO/E user's userid
becomes the ownerid.

RECATALOG|NORECATALOG
Indicates whether the catalog entries for the cluster components are to be re-created from
information in the VVDS.
RECATALOG

Re-creates the catalog entries if valid VVDS entries are found on the primary VVDS volume. If they
are not, the command ends.

Catalog entries can be re-created only in the catalog specified in the VVR except for entries that
are swap space, page space, or SYS1 data sets.

The RECORDSIZE parameter is required when doing a DEFINE RECATALOG of a variable-length
relative record data set (VRRDS).

Identification of RECATALOG requires that NAME, INDEXED, LINEAR, NONINDEXED, NUMBERED,
and VOLUMES be used as they were when the cluster was originally defined. If you specify
RECATALOG, you are not required to use CYLINDERS, RECORDS, or TRACKS.

If the ATTEMPTS, AUTHORIZATION, CATALOG, CODE, FOR, MODEL, OWNER, or TO parameter is
used during the original define, they must be respecified with RECATALOG to restore their original
values; otherwise, their default values are used.

When you use the TO parameter with RECATALOG, only the cluster's expiration date is updated.
The DATA and INDEX components are not updated.

If the RACF user has ADSP specified, a profile is defined to RACF for the data set being
recataloged.

If the cluster was SMS-managed, the volume serials should be the same as the volumes actually
selected by SMS.

The catalog for the entries being re-created must have the same name as the catalog that
contained the original entries.

Abbreviation: RCTLG

NORECATALOG
Indicates that the catalog entries are not re-created from VVDS entries. Catalog entries are
created for the first time.

Abbreviation: NRCTLG

RECORDSIZE(average maximum|default)
Specifies the average and maximum lengths, in bytes, of the records in the data component. The
minimum record size is 1 byte.

RECORDSIZE can be given as a parameter of either CLUSTER or DATA.

This parameter overrides the LRECL specification on the DATACLASS parameter.

For nonspanned records, the maximum record size + 7 cannot exceed the data component's control
interval size (that is, the maximum nonspanned record size, 32761, + 7 equals the maximum data
component control interval size, 32768).

When you use a record size that is larger than one control interval, you must also specify spanned
records (SPANNED). The formula for the maximum record size of spanned records as calculated by
VSAM is as follows:

DEFINE CLUSTER command

Chapter 2. Administering resources for DFSMStvs 103

MAXLRECL = CI/CA * (CISZ - 10)

where:

• MAXLRECL is the maximum spanned record size.
• CI/CA represents the number of control intervals per control area.
• CA is the number of control areas.
• CISZ is the quantity control interval size.

When you select NUMBERED, you identify a data set as a relative record data set. If you use
NUMBERED and select the same value for average as for maximum, the relative records must be
fixed-length. If you specify NUMBERED and select two different values for the average and maximum
record sizes, the relative records can be variable-length. If you know that your relative records are
fixed-length, however, be sure to define them as fixed-length. Performance is affected for relative
record data sets defined as variable-length. Each variable-length relative record is increased
internally in length by four.

When your records are fixed length, you can use the following formula to find a control interval size
that contains a whole number (n) of records:

CISZ = (n x RECSZ) + 10
or
n = (CISZ - 10)
 RECSZ

If you select SPANNED or NUMBERED for your fixed-length records:

CISZ =(n x (RECSZ + 3)) + 4
or
n = (CISZ - 4)
 (RECSZ + 3)

Variables in the example represent these values:

• n is the number of fixed-length records in a control interval.
• CISZ is the control interval size (see also the CONTROLINTERVALSIZE parameter).
• RECSZ is the average record size.

default
When SPANNED is used, the default is RECORDSIZE(4086 32600). Otherwise, the default is
RECORDSIZE(4089 4089).

Important:

REC(sec) x RECSZ(avg) > RECSZ(max)

• Variables in the example represent these values:

– REC(sec) is the secondary space allocation quantity, in records.
– RECSZ(avg) is the average record size (default = 4086 or 4089 bytes).
– RECSZ(max) is the maximum record size (default = 4089 or 32600 bytes).

When the SPANNED record size default prevails (32600 bytes), the secondary allocation quantity
should be at least 8 records.

Restriction: REPRO and EXPORT do not support data sets with record sizes greater than 32760.

Abbreviation:RECSZ

REUSE|NOREUSE
Specifies whether the cluster can be opened again and again as a reusable cluster.

DEFINE CLUSTER command

104 z/OS: z/OS DFSMStvs Administration Guide

If REUSE or NOREUSE is specified in the SMS data class, the value defined is used as the data set
definition, unless it has been previously defined with an explicitly specified or modeled DEFINE
attribute.
REUSE

Specifies that the cluster can be opened again and again as a reusable cluster. When a reusable
cluster is opened, its high-used RBA is set to zero if you open it with an access control block that
specifies the RESET attribute.

REUSE lets you create an entry-sequenced, key-sequenced, or relative-record work data set.

When you create a reusable cluster, you cannot build an alternate index to support it. Also, you
cannot create a reusable cluster with key ranges. Reusable data sets can be multivolume and can
have up to 123 physical extents.

Restriction: If you select REUSE and your command also contains the keyword UNIQUE, you
must remove the UNIQUE keyword or the DEFINE command will be unsuccessful.

Abbreviation: RUS

NOREUSE
indicates that the cluster cannot be opened again as a new cluster.

Abbreviation: NRUS

SHAREOPTIONS(crossregion[&cont; crosssystem]|1 3)
Shows how a component or cluster can be shared among users. However, SMS-managed volumes,
and catalogs containing SMS-managed data sets, must not be shared with non-SMS systems. For a
description of data set sharing, see z/OS DFSMS Using Data Sets. To ensure integrity, you should be
sure that share options specified at the DATA and INDEX levels are the same.

The value of SHAREOPTIONS is assumed to be (3,3) when the data set is accessed in VSAM RLS or
DFSMStvs mode.

crossregion
Specifies the amount of sharing allowed among regions within the same system or within multiple
systems using global resource serialization (GRS). Independent job steps in an operating system,
or multiple systems in a GRS ring, can access a VSAM data set concurrently. For more information
about GRS, see z/OS MVS Planning: Global Resource Serialization. To share a data set, each user
must use DISP=SHR in the data set's DD statement. You can use the following options:

OPT 1
The data set can be shared by any number of users for read processing, or the data set can
be accessed by only one user for read and write processing. VSAM ensures complete data
integrity for the data set. This setting does not allow any non-RLS access when the data
set is already open for VSAM RLS or DFSMStvs processing. A VSAM RLS or DFSMStvs open
will fail with this option if the data set is already open for any processing.

OPT 2
The data set can be accessed by any number of users for read processing, and it can also
be accessed by one user for write processing. It is the user's responsibility to provide read
integrity. VSAM ensures write integrity by obtaining exclusive control for a control interval
while it is being updated. A VSAM RLS or DFSMStvs open is not allowed while the data set
is open for non-RLS output.

If the data set has already been opened for VSAM RLS or DFSMStvs processing, a non-RLS
open for input is allowed; a non-RLS open for output fails. 2 If the data set is opened for
input in non-RLS mode, a VSAM RLS or DFSMStvs open is allowed.

2 You must apply APARs OW25251 and OW25252 to allow non-RLS read access to data sets already opened
for VSAM RLS or DFSMStvs processing.

DEFINE CLUSTER command

Chapter 2. Administering resources for DFSMStvs 105

OPT 3
The data set can be fully shared by any number of users. Each user is responsible for
maintaining both read and write integrity for the data the program accesses. This setting
does not allow any non-RLS access when the data set is already open for VSAM RLS or
DFSMStvs processing. If the data set is opened for input in non-RLS mode, a VSAM RLS or
DFSMStvs open is allowed.

OPT 4
The data set can be fully shared by any number of users. For each request, VSAM
refreshes the buffers used for direct processing. This setting does not allow any non-RLS
access when the data set is already open for VSAM RLS or DFSMStvs processing. If the
data set is opened for input in non-RLS mode, a VSAM RLS or DFSMStvs open is allowed.

As in SHAREOPTIONS 3, each user is responsible for maintaining both read and write
integrity for the data the program accesses.

crosssystem
Specifies the amount of sharing allowed among systems. Job steps of two or more operating
systems can gain access to the same VSAM data set regardless of the disposition indicated in
each step's DD statement for the data set. However, if you are using GRS across systems or JES3,
the data set might not be shared depending on the disposition of the system.

To get exclusive control of the data set's volume, a task in one system issues the RESERVE macro.
The level of cross-system sharing allowed by VSAM applies only in a multiple operating system
environment.

The cross-system sharing options are ignored by VSAM RLS or DFSMStvs processing. The values
follow:

1
Reserved

2
Reserved

3
Specifies that the data set can be fully shared. With this option, each user is responsible
for maintaining both read and write integrity for the data that user's program accesses.
User programs that ignore write integrity guidelines can cause VSAM program checks,
uncorrectable data set errors, and other unpredictable results. This option requires each
user to be responsible for maintenance. The RESERVE and DEQ macros are required with
this option to maintain data set integrity. (For information on using RESERVE and DEQ, see
z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN and z/OS MVS
Programming: Authorized Assembler Services Reference LLA-SDU.)

4
Indicates that the data set can be fully shared. For each request, VSAM refreshes the
buffers used for direct processing. This option requires that you use the RESERVE and DEQ
macros to maintain data integrity while sharing the data set. Improper use of the RESERVE
macro can cause problems similar to those described under SHAREOPTIONS 3. (For
information on using RESERVE and DEQ, see z/OS MVS Programming: Authorized
Assembler Services Reference ALE-DYN and z/OS MVS Programming: Authorized Assembler
Services Reference LLA-SDU.) Output processing is limited to update, or add processing, or
both that does not change either the high-used RBA or the RBA of the high key data
control interval if DISP=SHR is specified.

To ensure data integrity in a shared environment, VSAM provides users of SHAREOPTIONS 4 (cross-
region and cross-system) with the following assistance:

• Each PUT request immediately writes the appropriate buffer to the VSAM cluster's DASD space.
That is, the buffer in the user's address space that contains the new or updated data record, and the
buffers that contain new or updated index records when the user's data is key-sequenced.

DEFINE CLUSTER command

106 z/OS: z/OS DFSMStvs Administration Guide

• Each GET request refreshes all the user's input buffers. The contents of each data and index buffer
being used by the user's program is retrieved from the VSAM cluster's DASD.

Abbreviation: SHR

SPANNED|NONSPANNED
Specifies whether a data record is allowed to cross control interval boundaries.

If SPANNED or NONSPANNED is specified in the SMS data class, the value defined is used as the data
set definition, unless it has been previously defined with an explicitly specified or modeled DEFINE
attribute.

This parameter cannot be used when defining a linear data set cluster.
SPANNED

Specifies that, if the maximum length of a data record (as specified with RECORDSIZE) is larger
than a control interval, the record is contained on more than one control interval. This allows
VSAM to select a control interval size that is optimum for the DASD.

When a data record that is larger than a control interval is put into a cluster that allows spanned
records, the first part of the record completely fills a control interval. Subsequent control intervals
are filled until the record is written into the cluster. Unused space in the record's last control
interval is not available to contain other data records.

Attention: Using this parameter for a variable-length relative record data set causes an
error.

Abbreviation: SPND

NONSPANNED
Indicates that the record must be contained in one control interval. VSAM selects a control
interval size that accommodates your largest record.

Abbreviation:NSPND

SPEED|RECOVERY
Specifies whether the data component's control areas are to be preformatted before alternate index
records are loaded into them.

This parameter is only considered during the actual loading (creation) of a data set. Creation occurs
when the data set is opened and the high-used RBA is equal to zero. After normal CLOSE processing
at the completion of the load operation, the physical structure of the data set and the content of the
data set extents are exactly the same. Any processing of the data set after the successful load
operation is the same, and the specification of this parameter is not considered.

If you use RECOVERY, the initial load takes longer because the control areas are first written with
either empty or software end-of-file intervals. These preformatted CIs are then updated, using update
writes, with the alternate index records. SPEED is recommended, because the initial load is quicker.
SPEED

Does not preformat the data component's space.

If the initial load is unsuccessful, you must load the alternate index records again from the
beginning, because VSAM cannot determine the location of your last correctly written record.
VSAM cannot find a valid end-of-file indicator when it searches your alternate index records.

RECOVERY
Specifies that the data component's control areas are written with records that indicate end-of-
file. When an alternate index record is written into a control interval, it is always followed by a
record that identifies the record just written as the last record in the alternate index.

RECOVERY is a way to verify storage that is used on the device for each CA before the data is
actually written.

Abbreviation: RCVY

DEFINE CLUSTER command

Chapter 2. Administering resources for DFSMStvs 107

STORAGECLASS(class)
For SMS-managed data sets: Gives the name, 1 to 8 characters, of the storage class.

Your storage administrator defines the names of the storage classes you can use. A storage class is
assigned either when you use STORAGECLASS, or an ACS routine selects a storage class for the new
data set. The storage class provides the storage attributes that are specified on the UNIT and
VOLUME operand for non-SMS managed data sets. Use the storage class to select the storage service
level to be used by SMS for storage of the data set. If SMS is inactive and STORAGECLASS is used, the
DEFINE will be unsuccessful.

STORAGECLASS cannot be selected as a subparameter of DATA or INDEX.

Abbreviation: STORCLAS

TO(date)|FOR(days)
Specifies the retention period for the cluster being defined. If neither TO nor FOR is used, the cluster
can be deleted at any time. The MANAGEMENTCLASS maximum retention period, if selected, limits
the retention period specified by this parameter.

For non-SMS-managed data sets, the correct retention period is reflected in the catalog entry. The
VTOC entry cannot contain the correct retention period. Enter a LISTCAT command for the correct
expiration date.

For SMS-managed data sets, the expiration date in the catalog is updated and the expiration date in
the format-1 DSCB is changed. If the expiration date in the catalog does not agree with the expiration
date in the VTOC, the VTOC entry overrides the catalog entry.
TO(date)

Specifies the date up to which to keep the cluster before it is allowed to be deleted. The date is
given in the form [yy]yyddd, in which yyyy is a four-digit year, yy is a two-digit year, and ddd is a
three-digit day of the year (001 through 366). Two-digit years are treated as if 19 is specified as
the first two digits of yyyy. The dates (19)99365 and (19)99366 are considered never-expire
dates.

For expiration dates of January 1, 2000, and later, you must use the form TO(yyyyddd).

The maximum value of yyyy is 2155, and the maximum value of ddd is 365 for nonleap years and
366 for leap years.

FOR(days)
Shows the number of days to keep the cluster being defined. The maximum number is 9999. If
the number is 0 through 9998, the cluster is retained for the number of days; if the number is
9999, the cluster is retained indefinitely.

WRITECHECK|NOWRITECHECK
Indicates whether the cluster or component is to be checked by a machine action called write check
when a record is written into it.

The WRITECHECK setting is ignored when the data set is opened for VSAM RLS or DFSMStvs access.
WRITECHECK

Shows that a record is written and then read, without data transfer, to test for the data check
condition.

Abbreviation: WCK

NOWRITECHECK
Specifies that the cluster or component is not to be checked by a write check.

Abbreviation: NWCK

Data and index components of a cluster

You should use attributes separately for the cluster's data and index components. A list of the DATA and
INDEX parameters is provided at the beginning of this topic. These parameters are described in detail as
parameters of the cluster as a whole. Restrictions are noted with each parameter's description.

DEFINE CLUSTER command

108 z/OS: z/OS DFSMStvs Administration Guide

DEFINE CLUSTER examples

The following examples show functions that the DEFINE CLUSTER command can perform.

Define an SMS-managed key-sequenced cluster: Example 1

In this example, an SMS-managed key-sequenced cluster is defined. The DEFINE CLUSTER command
builds a catalog entry and allocates space to define the key-sequenced cluster SMS04.KSDS01.

//DEFINE JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME (SMS04.KSDS01) -
 STORAGECLASS (FINCE02) -
 MANAGEMENTCLASS (MC1985) -
 DATACLASS (VSAMDB05))
/*

The parameters for this command follow:

• STORAGECLASS specifies an installation-defined name of a storage class, FINCE02, to be assigned to
this cluster.

• MANAGEMENTCLASS specifies an installation-defined name of a management class, MC1985, to be
assigned to this cluster. Attributes of MANAGEMENTCLASS control the data set's retention, backup,
migration, etc.

• DATACLASS specifies an installation-defined name of a data class, VSAMDB05, to be assigned to this
cluster. Record size, key length and offset, space allocation, etc., are derived from the data class and
need not be specified.

Define an SMS-managed key-sequenced cluster specifying data and index parameters: Example 2

In this example, an SMS-managed key-sequenced cluster is defined. The SMS data class space allocation
is overridden by space allocations at the data and index levels. The DEFINE CLUSTER command builds a
catalog entry and allocates space to define the key-sequenced cluster SMS04.KSDS02.

//DEFINE JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME (SMS04.KSDS02) -
 STORAGECLASS (FINCE02) -
 MANAGEMENTCLASS (MC1985) -
 DATACLASS (VSAMDB05)) -
 LOG(ALL) -
 LOGSTREAMID(LogA) -
 DATA -
 (MEGABYTES (10 2)) -
 INDEX -
 (KILOBYTES (25 5))
/*

The parameters for this command are as follows:

• STORAGECLASS is an installation defined name of a storage class, FINCE02, to be assigned to the
cluster.

• MANAGEMENTCLASS is an installation defined name of a management class, MC1985, to be assigned
to the cluster. Attributes associated with a management class control the cluster's retention, backup,
migration, etc.

• DATACLASS is an installation-defined name of a data class, VSAMDB05, assigned to the cluster. Record
size, key length and offset, etc., are derived from the data class and need not be specified. If
MAXVOLUMES or the space parameters (MEGABYTES and KILOBYTES) were not specified, the values in
the data class would be used.

DEFINE CLUSTER command

Chapter 2. Administering resources for DFSMStvs 109

• LOG(ALL) specifies that changes to the sphere accessed in RLS and DFSMStvs mode can be backed out
and forward recovered using external logs.

• LOGSTREAMID gives the name of the forward recovery log stream.

The DATA and INDEX parameters follow:

• MEGABYTES, used for DATA, allocates a primary space of 10 megabytes to the data component. A
secondary space of 2 megabytes is specified for extending the data component.

• KILOBYTES, used for INDEX, allocates a primary space of 25 kilobytes to the index component. A
secondary space of 5 kilobytes is specified for extending the index component.

Define a key-sequenced cluster specifying data and index parameters: Example 3

In this example, a key-sequenced cluster is defined. The DATA and INDEX parameters are specified and
the cluster's data and index components are explicitly named. This example assumes that an alias name
VWX is defined for the catalog RSTUCAT1. This naming convention causes VWX.MYDATA to be cataloged
in RSTUCAT1.

//DEFCLU1 JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME(VWX.MYDATA) -
 VOLUMES(VSER02) -
 RECORDS(1000 500)) -
 DATA -
 (NAME(VWX.KSDATA) -
 KEYS(15 0) -
 RECORDSIZE(250 250) -
 FREESPACE(20 10) -
 BUFFERSPACE(25000)) -
 INDEX -
 (NAME(VWX.KSINDEX) -
 CATALOG (RSTUCAT1)
/*

The DEFINE CLUSTER command builds a cluster entry, a data entry, and an index entry to define the key-
sequenced cluster VWX.MYDATA. The parameters for the cluster as a whole are:

• NAME indicates that the cluster's name is VWX.MYDATA.
• VOLUMES is used when the cluster is to reside on volume VSER02.
• RECORDS specifies that the cluster's space allocation is 1000 data records. The cluster is extended in

increments of 500 records. After the space is allocated, VSAM calculates the amount required for the
index and subtracts it from the total.

In addition to the parameters specified for the cluster as a whole, DATA and INDEX parameters specify
values and attributes that apply only to the cluster's data or index component. The parameters specified
for the data component of VWX.MYDATA are:

• NAME indicates that the data component's name is VWX.KSDATA.
• KEYS shows that the length of the key field is 15 bytes and that the key field begins in the first byte

(byte 0) of each data record.
• RECORDSIZE specifies fixed-length records of 250 bytes.
• BUFFERSPACE verifies that a minimum of 25 000 bytes must be provided for I/O buffers. A large area

for I/O buffers can help to improve access time with certain types of processing. For example, with
direct processing if the high-level index can be kept in virtual storage, access time is reduced. With
sequential processing, if enough I/O buffers are available, VSAM can perform a read-ahead, thereby
reducing system overhead and minimizing rotational delay.

• FREESPACE specifies that 20% of each control interval and 10% of each control area are to be left free
when records are loaded into the cluster. After the cluster's records are loaded, the free space can be
used to contain new records.

DEFINE CLUSTER command

110 z/OS: z/OS DFSMStvs Administration Guide

The parameters specified for the index component of VWX.MYDATA are:

• NAME specifies that the index component's name is VWX.KSINDEX.
• CATALOG specifies the catalog name.

Define a key-sequenced cluster and an entry-sequenced cluster: Example 4

In this example, two VSAM clusters are defined. The first DEFINE command defines a key-sequenced
VSAM cluster, VWX.EXAMPLE.KSDS1. The second DEFINE command defines an entry-sequenced VSAM
cluster, KLM.EXAMPLE.ESDS1. In both examples, it is assumed that alias names, VWX and KLM, have
been defined for user catalogs RSTUCAT1 and RSTUCAT2, respectively.

//DEFCLU2 JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME(VWX.EXAMPLE.KSDS1) -
 MODEL(VWX.MYDATA) -
 VOLUMES(VSER02) -
 NOIMBED)
 DEFINE CLUSTER -
 (NAME(KLM.EXAMPLE.ESDS1) -
 RECORDS(100 500) -
 RECORDSIZE(250 250) -
 VOLUMES(VSER03) -
 NONINDEXED)
/*

The first DEFINE command builds a cluster entry, a data entry, and an index entry to define the key-
sequenced cluster VWX.EXAMPLE.KSDS1. Its parameters are:

• NAME specifies the name of the key-sequenced cluster, VWX.EXAMPLE.KSDS1. The cluster is defined in
the user catalog for which VWX has been established as an alias.

• MODEL identifies VWX.MYDATA as the cluster to use as a model for VWX.EXAMPLE.KSDS1. The
attributes and specifications of VWX.MYDATA that are not otherwise specified with the DEFINE
command parameters are used to define the attributes and specifications of VWX.EXAMPLE.KSDS1.
VWX.MYDATA is located in the user catalog for which VWX has been established as an alias.

• VOLUMES specifies that the cluster is to reside on volume VSER02.
• NOIMBED specifies that space is not to be allocated for sequence-set control intervals within the data

component's physical extents.

The second DEFINE command builds a cluster entry and a data entry to define an entry-sequenced
cluster, KLM.EXAMPLE.ESDS1. Its parameters are:

• NAME specifies the name of the entry-sequenced cluster, KLM.EXAMPLE.ESDS1. The cluster is defined
in the user catalog for which KLM has been established as an alias.

• RECORDS specifies that the cluster space allocation is 100 records. When the cluster is extended, it is
extended in increments of 500 records.

• RECORDSIZE specifies that the cluster records are fixed length (the average record size equals the
maximum record size) and 250 bytes long.

• VOLUMES specifies that the cluster is to reside on volume VSER03.
• NONINDEXED specifies that the cluster is to be an entry-sequenced cluster.

Define a relative record cluster in a catalog: Example 5

In this example, a relative record cluster is defined.

//DEFCLU4 JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME(EXAMPLE.RRDS1) -
 RECORDSIZE(100 100) -

DEFINE CLUSTER command

Chapter 2. Administering resources for DFSMStvs 111

 VOLUMES(VSER01) -
 TRACKS(10 5) -
 NUMBERED) -
 CATALOG(USERCAT)
/*

The DEFINE CLUSTER command builds a cluster entry and a data entry to define the relative record
cluster EXAMPLE.RRDS1 in the user catalog. The DEFINE CLUSTER command allocates ten tracks for the
cluster's use. The command's parameters are:

• NAME specifies that the cluster's name is EXAMPLE.RRDS1.
• RECORDSIZE specifies that the records are fixed-length, 100 byte records. Average and maximum

record length must be equal for a fixed-length relative record data set, but not equal for a variable-
length RRDS.

• VOLUMES specifies that the cluster is to reside on volume VSER01. This example assumes that the
volume is already cataloged in the user catalog, USERCAT.

• TRACKS specifies that 10 tracks are allocated for the cluster. When the cluster is extended, it is to be
extended in increments of 5 tracks.

• NUMBERED specifies that the cluster's data organization is to be relative record.
• CATALOG specifies the catalog name.

The DEFINE CLUSTER command builds a cluster entry and a data entry to define the relative record
cluster EXAMPLE.RRDS1 in the user catalog. The DEFINE CLUSTER command allocates ten tracks for the
cluster's use. The command's parameters are:

• NAME specifies that the cluster's name is EXAMPLE.RRDS1.
• RECORDSIZE specifies that the records are fixed-length, 100 byte records. Average and maximum

record length must be equal for a fixed-length relative record data set, but not equal for a variable-
length RRDS.

• VOLUMES specifies that the cluster is to reside on volume VSER01. This example assumes that the
volume is already cataloged in the user catalog, USERCAT.

• TRACKS specifies that 10 tracks are allocated for the cluster. When the cluster is extended, it is to be
extended in increments of 5 tracks.

• NUMBERED specifies that the cluster's data organization is to be relative record.
• CATALOG specifies the catalog name.

Define a reusable entry-sequenced cluster in a catalog: Example 6

In this example, a reusable entry-sequenced cluster is defined. You can use the cluster as a temporary
data set. Each time the cluster is opened, its high-used RBA can be reset to zero.

//DEFCLU5 JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME(EXAMPLE.ESDS2) -
 RECORDSIZE(2500 3000) -
 SPANNED -
 VOLUMES(VSER03) -
 CYLINDERS(2 1) -
 NONINDEXED -
 REUSE -
 CATALOG(RSTUCAT2)
/*

The DEFINE CLUSTER command builds a cluster entry and a data entry to define the entry-sequenced
cluster, EXAMPLE.ESDS2. The DEFINE CLUSTER command assigns two tracks for the cluster's use. The
command's parameters are:

• NAME specifies that the cluster's name is EXAMPLE.ESDS2.

DEFINE CLUSTER command

112 z/OS: z/OS DFSMStvs Administration Guide

• RECORDSIZE specifies that the records are variable length, with an average size of 2500 bytes and a
maximum size of 3000 bytes.

• SPANNED specifies that data records can cross control interval boundaries.
• VOLUMES specifies that the cluster is to reside on volume VSER03.
• CYLINDERS specifies that two cylinders are to be allocated for the cluster's space. When the cluster is

extended, it is to be extended in increments of 1 cylinder.
• NONINDEXED specifies that the cluster's data organization is to be entry-sequenced. This parameter

overrides the INDEXED parameter.
• REUSE specifies that the cluster is to be reusable. Each time the cluster is opened, its high-used RBA

can be reset to zero and it is effectively an empty cluster.
• CATALOG specifies that the cluster is to be defined in a user catalog, RSTUCAT2.

Define a key-sequenced cluster in a catalog: Example 7

In this example, a key-sequenced cluster is defined. In other examples, an alternate index is defined over
the cluster, and a path is defined that relates the cluster to the alternate index. The cluster, its alternate
index, and the path entry are all defined in the same catalog, USERCAT.

//DEFCLU6 JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME(EXAMPLE.KSDS2)) -
 DATA -
 (RECORDS(500 100) -
 EXCEPTIONEXIT(DATEXIT) -
 ERASE -
 FREESPACE(20 10) -
 KEYS(6 4) -
 RECORDSIZE(80 100) -
 VOLUMES(VSER01)) -
 INDEX -
 (RECORDS(300 300) -
 VOLUMES(VSER01)) -
 CATALOG(USERCAT)
/*

The DEFINE CLUSTER command builds a cluster entry, a data entry, and an index entry to define the key-
sequenced cluster, EXAMPLE.KSDS2. The DEFINE CLUSTER command allocates space separately for the
cluster's data and index components.

The parameter that applies to the cluster is NAME, which specifies that the cluster's name is
EXAMPLE.KSDS2.

The parameters that apply only to the cluster's data component are enclosed in the parentheses following
the DATA keyword:

• RECORDS specifies that an amount of tracks equal to at least 500 records is to be allocated for the data
component's space. When the data component is extended, it is to be extended in increments of tracks
equal to 100 records.

• EXCEPTIONEXIT specifies the name of the exception exit routine, DATEXIT, that is to be processed if an
I/O error occurs while a data record is being processed.

• ERASE specifies that the cluster's data is to be erased (overwritten with binary zeros) when the cluster
is deleted.

• FREESPACE specifies the amounts of free space to be left in the data component's control intervals
(20%) and the control areas (10% of the control intervals in the control area) when data records are
loaded into the cluster.

• KEYS specifies the location and length of the key field in each data record. The key field is 6 bytes long
and begins in the fifth byte (byte 4) of each data record.

• RECORDSIZE specifies that the cluster's records are variable length, with an average size of 80 bytes
and a maximum size of 100 bytes.

DEFINE CLUSTER command

Chapter 2. Administering resources for DFSMStvs 113

• VOLUMES specifies that the cluster is to reside on volume VSER01.

The parameters that apply only to the cluster's index component are enclosed in the parentheses
following the INDEX keyword:

• RECORDS specifies that an amount of tracks equal to at least 300 records is to be allocated for the
index component's space. When the index component is extended, it is to be extended in increments of
tracks equal to 300 records.

• VOLUMES specifies that the index component is to reside on volume VSER01.

The CATALOG parameter specifies that the cluster is to be defined in a user catalog, USERCAT4.

Define an entry-sequenced cluster using a model: Example 8

In this example, two entry-sequenced clusters are defined. The attributes of the second cluster defined
are modeled from the first cluster.

//DEFCLU7 JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME(GENERIC.A.BAKER) -
 VOLUMES(VSER02) -
 RECORDS(100 100) -
 RECORDSIZE(80 80) -
 NONINDEXED) -
 CATALOG(USERCAT4)
 DEFINE CLUSTER -
 (NAME(GENERIC.B.BAKER) -
 MODEL(GENERIC.A.BAKER USERCAT4)) -
 CATALOG(USERCAT4)
/*

The first DEFINE CLUSTER command defines an entry-sequenced cluster, GENERIC.A.BAKER. Its
parameters are:

• NAME specifies the name of the entry-sequenced cluster, GENERIC.A.BAKER.
• VOLUMES specifies that the cluster is to reside on volume VSER02.
• RECORDS specifies that the cluster's space allocation is 100 records. When the cluster is extended, it is

extended in increments of 100 records.
• RECORDSIZE specifies that the cluster's records are fixed length (the average record size equals the

maximum record size) and 80 bytes long.
• NONINDEXED specifies that the cluster is entry-sequenced.
• CATALOG specifies that the cluster is to be defined in the USERCAT4 catalog.

The second DEFINE CLUSTER command uses the attributes and specifications of the previously defined
cluster, GENERIC.A.BAKER, as a model for the cluster still to be defined, GENERIC.B.BAKER. A list of the
parameters follows:

• NAME specifies the name of the entry-sequenced cluster, GENERIC.B.BAKER.
• MODEL identifies GENERIC.A.BAKER, cataloged in user catalog USERCAT4, as the cluster to use as a

model for GENERIC.B.BAKER. The attributes and specifications of GENERIC.A.BAKER that are not
otherwise specified with the DEFINE command's parameters are used to define the attributes and
specifications of GENERIC.B.BAKER.

• CATALOG specifies that the cluster is to be defined in the USERCAT4 catalog.

Define a VSAM volume data set: Example 9

In this example, a VVDS is explicitly defined. The cluster is named using the restricted VVDS name format
'SYS1.VVDS.Vvolser'.

//DEFCLU8 JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A

DEFINE CLUSTER command

114 z/OS: z/OS DFSMStvs Administration Guide

//SYSIN DD *
 DEFINE CLUSTER -
 (NAME(SYS1.VVDS.VVSER03) -
 VOLUMES(VSER03) -
 NONINDEXED -
 CYLINDERS(1 1)) -
 CATALOG(USERCAT4)
/*

This DEFINE CLUSTER command defines an entry-sequenced cluster that is used as a VVDS. The
parameters are:

• NAME specifies the name of a VVDS, 'SYS1.VVDS.Vvolser', SYS1.VVDS.VVSER03.
• VOLUMES specifies that the cluster is to reside on volume VSER03. Only one volume serial can be
specified.

• NONINDEXED specifies that the cluster is entry-sequenced.
• CYLINDERS specifies that the cluster's space allocation is 1 cylinder. When the cluster is extended, it is

extended in increments of 1 cylinder.
• CATALOG specifies that the cluster is to be defined in the USERCAT4 catalog.

Define a relative record data set with expiration date beyond 1999: Example 10

In this example, an entry-sequenced cluster is defined specifying an expiration date beyond the year
1999, using the TO parameter.

//DEFCLU8 JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A
//SYSIN DD *
 DEFINE CLUSTER -
 (NAME(EXAMPLE.RRDS1) -
 RECORDSIZE(100 100) -
 VOLUMES(VSER01) -
 TRACKS(10 5) -
 NUMBERED -
 TO(2015012)) -
 CATALOG(USERCAT)
/*

The DEFINE CLUSTER command builds a cluster entry and a data entry to define the relative record
cluster, EXAMPLE.RRDS1, in the user catalog, USERCAT. The DEFINE CLUSTER command allocates ten
tracks for the cluster's use. The expiration date is set to January 12, 2015. The parameters are:

• NAME specifies that the cluster's name is EXAMPLE.RRDS1.
• RECORDSIZE specifies that the records are fixed-length, 100-byte records. Average and maximum

record length must be equal for a fixed-length relative record data set, but not equal for a variable-
length RRDS.

• VOLUMES specifies that the cluster is to reside on volume VSER01.
• TRACKS specifies that ten tracks are allocated for the cluster. When the cluster is extended, it is to be

extended in increments of five tracks.
• NUMBERED specifies that the cluster's data organization is to be relative record.
• TO specifies that the retention period is set to expire January 12, 2015. Note that the year (2015) is
specified as a four-digit number and concatenated with the day (012). A four-digit year must be
specified when the expiration date is beyond 1999. The retention period could also have been set by
using the FOR parameter, followed by the number of days the cluster is to be retained.

• CATALOG specifies that the cluster is to be defined in a user catalog, USERCAT.

Define a linear data set cluster in a catalog: Example 11

In this example, a linear data set cluster is defined in a catalog.

//DEFLDS JOB ...
//STEP1 EXEC PGM=IDCAMS
//SYSPRINT DD SYSOUT=A

DEFINE CLUSTER command

Chapter 2. Administering resources for DFSMStvs 115

//SYSIN DD *
 DEFINE CLUSTER -
 (NAME(EXAMPLE.LDS01) -
 VOLUMES(VSER03) -
 TRACKS(20 10) -
 LINEAR -
 CATALOG(USERCAT)
/*

The DEFINE CLUSTER command builds a cluster entry and a data entry to define the linear data set
cluster EXAMPLE.LDS01. The parameters are:

• NAME specifies that the cluster's name is EXAMPLE.LDS01.
• VOLUMES specifies that the cluster is to reside on volume VSER03.
• TRACKS specifies that 20 tracks are allocated for the cluster's space. When the cluster is extended, it is

to be extended in increments of 10 tracks.
• LINEAR specifies that the cluster's data organization is to be linear.
• CATALOG specifies that the cluster is to be defined in a user catalog, USERCAT.

Securing log streams
You must define authorization for system logger resources so that DFSMStvs can access, read, and write
to its log streams. DFSMStvs uses undo, shunt, log of logs, and forward recovery log streams. This
authorization applies to log streams in the coupling facility and DASD-only log streams. You can use
RACF, a component of the z/OS Security Server, or an equivalent security product to secure log streams
and implement DFSMStvs access to them.

For more information about authorizing DFSMStvs access to log streams, see z/OS DFSMStvs Planning
and Operating Guide.

DEFINE CLUSTER command

116 z/OS: z/OS DFSMStvs Administration Guide

Chapter 3. Customizing the DFSMStvs environment

This topic contains information that is Programming Interface information.

This topic describes DFSMS macro instructions that you can use for DFSMStvs. For more information, see
z/OS DFSMS Macro Instructions for Data Sets.

Coding VSAM macros
This topic contains VSAM macro formats and examples.

The macros that work at assembly time enable you to specify subparameter values as absolute numeric
expressions, character strings, codes, and expressions that generate valid relocatable A-type address
constants.

The macros that work at execution also enable you to specify these values as follows:

• Register notation, in which the expression designating a register from 2 through 12 is enclosed in
parentheses. For example, (2) and (REG), where REG is a label equated to a number from 2 through 12.

• An expression of the form (S,scon), in which scon is an expression valid for an S-type address constant,
including the base-displacement form.

• An expression of the form (*,scon), in which scon is an expression valid for an S-type address constant,
including the base-displacement form, and the address specified by scon is indirect—that is, it gives the
location of the area that contains the value for the subparameter.

For most programming applications, you can use register notation or absolute numeric expressions for
numbers, character strings for names, and register notation or expressions that generate valid A-type
address constants for addresses. “Subparameters with GENCB, MODCB, SHOWCB, and TESTCB” on page
117 gives all the ways of coding each parameter for the macros that work at execution time.

You can write a reentrant program only with execution-time macros. “Use of list, execute, and generate
forms of VSAM macros” on page 118 describes alternative ways of coding these macros for reentrant
programs. This topic describes the standard form of these macros.

Subparameters with GENCB, MODCB, SHOWCB, and TESTCB
The addresses, names, numbers, and options required with subparameters in GENCB, MODCB, SHOWCB,
and TESTCB can be expressed in a variety of ways:

• An absolute numeric expression, for example, STRNO=3 and COPIES=10.
• A code or a list of codes separated by commas and enclosed in parentheses, for example,

OPTCD=KEY or OPTCD=(KEY,DIR,IN).
• A character string, for example, DDNAME=DATASET.
• A register from 2 through 12 that contains an address or numeric value, for example, SYNAD=(3);

equated labels can be used to designate a register, for example, SYNAD=(ERR), where the following
equate statement has been included in the program: ERR EQU 3.

• An expression of the form (S,scon), where scon is an expression valid for an S-type address constant,
including the base-displacement form. The contents of the base register are added to the displacement
to obtain the value of the keyword. For example, if the value of the keyword being represented is a
numeric value (that is, COPIES, LENGTH, RECLEN), the contents of the base register are added to the
displacement to determine the numeric value. If the value of the keyword being represented is an
address constant (that is, WAREA, EXLST, EODAD, ACB), the contents of the base register are added to
the displacement to determine the value of the address constant.

• An expression of the form (*,scon), where scon is an expression valid for an S-type address constant,
including the base-displacement form. The address specified by scon is indirect, that is, it is the

© Copyright IBM Corp. 2003, 2020 117

address of an area that contains the value of the keyword. The contents of the base register are added
to the displacement to determine the address of the fullword of storage that contains the value of the
keyword.

If an indirect S-type address constant is used, the value it points to must meet the following criteria:

– If the value is a numeric quantity or an address, it must occupy a fullword of storage.
– If the value is an alphanumeric character string, it must occupy two words of storage, be left aligned,

and be filled on the right with blanks.
• An expression valid for a relocatable A-type address constant, for example, AREA=MYAREA+4.

The specified keyword determines the type of expressions that can be used. Also, register and S-type
address constants cannot be used when MF=L is specified.

Use of list, execute, and generate forms of VSAM macros
The BLDVRP, DLVRP, GENCB, MODCB, SHOWCB, and TESTCB macros build a parameter list describing in
codes the actions shown by the subparameters you specify and pass the list to VSAM to take the
suggested action.

The list, execute, and generate forms of BLDVRP, DLVRP, GENCB, MODCB, SHOWCB, and TESTCB allow
you to write reentrant programs, to share parameter lists, and to modify a parameter list before using it.

Following is a brief description of the list, execute, and generate forms:

• The list form is used to build the parameter list either in line (called a simple list) or in an area remote
from the macro expansion (called a remote list). Both the simple- and the remote-list forms allow you
to build a single parameter list that can be shared.

• The execute form is used to modify a parameter list and to pass it to VSAM for action.
• The generate form is used to build the parameter list in a remote area and to pass it to VSAM for action.

The list, execute, and generate forms of the BLDVRP, DLVRP, GENCB, MODCB, SHOWCB, and TESTCB
macros have the same format as the standard forms, except for:

• An additional keyword, MF.
• Keywords that are required in the standard form may be optional in the list, execute, and generate

forms or may not be allowed in the execute form. The meaning of the keywords, however, and the
notation that may be used to express addresses, names, numbers, and option codes are the same.

This topic describe the format of the MF keyword and the use of list, execute, and generate forms. They
also show the optional and invalid subparameters.

List-form keyword

The format of the MF keyword for the list form is:

MF={L|(L,address[,label])}

where:
L

Specifies that this is the list form of the macro.
address

Specifies the address of a remote area in which the parameter list is to be built. The area must begin
on a fullword boundary. You can specify the address in register notation or as an expression valid for a
relocatable A-type address constant or a direct or indirect S-type address constant.

label
Specifies a unique name used in an EQU instruction in the expansion of the macro. Label is equated to
the length of the parameter list. You do not have to know the length of the parameter list if you code
label; the expansion of the macro determines the amount of storage required.

Because the MF=L expansion does not include executable code, register notation and expressions that
generate S-type address constants cannot be used.

118 z/OS: z/OS DFSMStvs Administration Guide

If you code MF=L, the parameter list is built in line, which means that the program is not reentrant if the
parameter list is modified at execution.

If you code MF=(L,address), the parameter list is built in the remote area specified, and the area must be
large enough for the parameter list.

The size, in fullwords, of a parameter list is:

• For GENCB, 4, plus 3 times the number of ACB, EXLST, or RPL keywords specified (plus 1 for DDNAME,
EODAD, JRNAD, LERAD, or SYNAD)

• For MODCB, 3, plus 3 times the number of ACB, EXLST, or RPL keywords specified (plus 1 for DDNAME,
EODAD, JRNAD, LERAD, or SYNAD)

• For SHOWCB, 5, plus 2 times the number of fields specified in the FIELDS keyword
• For TESTCB, 8 (plus 1 for either DDNAME, STMST, EODAD, JRNAD, LERAD, or SYNAD).

If you code MF=(L,address,label), the parameter list is built in the remote area specified. The expansion of
the macro equates label with the length of the parameter list.

Execute-form keyword

The format of the MF keyword for the execute form is:

MF=(E,address)

where:
E

Specifies that this is the execute form of the macro.
address

Specifies the address of the parameter list.

Expansion of the execute form of the macro results in executable code that causes:

1. A parameter list to be modified, if requested
2. Control to be passed to a routine that satisfies the request.

You may not use the execute form to add an entry to a parameter list. If you try to add an entry, you
receive a return code of 8 in register 15.

Generate-form keyword

The format of the MF keyword for the generate form is:

MF=(G,address[,label])

where:
G

Specifies that this is the generate form of the macro.
address

Specifies the address of a remote area in which the parameter list is to be built. The area must begin
on a fullword boundary.

label
Specifies a unique name that is used in an EQU instruction in the expansion of the macro. Label is
equated to the length of the parameter list. You do not have to know the length of the parameter list if
you code label; the expansion of the macro determines the amount of storage required.

If you code MF=(G,address), the parameter list is built in the remote area specified.

If you code MF=(G,address,label), the parameter list is built in the remote area specified. The expansion
of the macro equates the length of the parameter list to label.

Chapter 3. Customizing the DFSMStvs environment 119

Examples of generate, list, and execute forms
Table 18 on page 120 shows which forms of GENCB, MODCB, SHOWCB, and TESTCB to use in reentrant
or nonreentrant and shared or nonshared environments.

Table 18. Reentrant programming. Reentrant programmingThis table shows which forms of GENCB,
MODCB, SHOWCB, and TESTCB to use in reentrant or nonreentrant and shared or nonshared
environments.

Reentrant Nonreentrant

Shared MF=(L,address[,label]) MF=L

MF=(E,address) MF=(E,address)

Nonshared MF=(G,address[,label]) Standard Form

As Table 18 on page 120 shows, these guidelines apply to reentrant programming:

• To share parameter lists in a reentrant program, you should use the remote-list form with the execute
form.

• To share parameter lists in a nonreentrant program, you should use the simple-list form should be used
with the execute form.

• If you do not intend to share parameter lists, you should use the generate form for reentrant programs
and the standard form for nonreentrant programs.

The following examples show how the generate, list, and execute forms work.

Example: Generate form (reentrant)

In this example, the generate form of GENCB is used to create a default request parameter list (RPL) in a
reentrant environment.

 LA 10,LEN1 Get length of the parameter list.

 GETMAIN R,LV=(10) Get storage for the area in which x
 the parameter list is to be built. x
 LR 2,1 Save address of parameter-list area.

 GENCB BLK=RPL, x
 MF=(G,(2),LEN1)

The macro expansion equates LEN1 to the length of the parameter list, as follows:

+LEN1 EQU 16

The parameter list is built in the area acquired by the GETMAIN macro and pointed to by register 2. This
list is used by VSAM to build the RPL. VSAM returns the RPL address in register 1 and the RPL length in
register 0. If the WAREA and LENGTH parameters are used, the RPL is built at the WAREA address.

Example: Remote-list form (reentrant)

In this example, the remote-list form of MODCB is used to build a parameter list that will later be used to
modify the MACRF bits in the access method control block ANYACB.

 LA 8,LEN2 Get length of the parameter list.

 GETMAIN R,LV=(8) Get storage for the area in which the x
 parameter list is to be built.
 LR 3,1 Save address of the parameter-list area.

 MODCB ACB=ANYACB, x
 MACRMF=(L,(3),LEN2)

The macro expansion equates the length of the parameter list to LEN2, as follows:

120 z/OS: z/OS DFSMStvs Administration Guide

+LEN2 EQU 24

This parameter list is built in the remote area pointed to by register 3. The list is used by VSAM to modify
the ACB when an execute form of MODCB is issued (see next example). The list form only creates a
parameter list; it does not modify the ACB.

Example: Execute form (reentrant)

In this example, the execute form of MODCB is used to modify the address of the access method control
block and MACRF codes in the parameter list created by the remote-list form of MODCB in the previous
example.

MODCB ACB=MYACB,MACRF=(ADR,SEQ,OUT),MF=(E,(3))

The parameter list pointed to by register 3 is changed so that the ACB and MACRF parameter values in the
execute form override those in the list form. The access method control block, MYACB, is then modified to
MACRF=(ADR,SEQ,OUT).

The access method control block at ANYACB is not changed by either of these examples.

ACB—generate an access method control block at assembly time
Use the ACB macro to generate an access method control block at assembly time.

The format of the ACB macro follows.

The format of the ACB macro.

Label Operand Parameters

[label] ACB [AM=VSAM]
[,BSTRNO=abs expression]
[,BUFND=abs expression]
[,BUFNI=abs expression]
[,BUFSP=abs expression]
[,DDNAME=character string]
[,EXLST=address]
[,MACRF=([ADR][,CNV][,KEY]
 [,CFX|NFX]
 [DDN|DSN]
 [,DFR|NDF]
 [,DIR][,SEQ][,SKP]
 [,ICI |NCI]
 [,IN][,OUT]
 [,LEW|NLW]
 [,NIS|SIS]
 [,NRM|AIX]
 [,NRS|RST]
 [,NSR|LSR|GSR|RLS]
 [,NUB|UBF])]
[,MAREA=address]
[,MLEN=abs expression]
[,RLSREAD={NRI|CR|CRE|NORD}]
[,PASSWD=address]
[,RMODE31={ALL|BUFF|CB|NONE}]
[,SHRPOOL={0|abs expression}]
[,STRNO=abs expression]
[,SUBSYSNM=address]
[,CTRLACB={YES|NO}]

Values for ACB macro subparameters can be specified as absolute numeric expressions, character
strings, codes, and expressions that generate valid relocatable A-type address constants.

ACB

Chapter 3. Customizing the DFSMStvs environment 121

label
Specifies 1 to 8 characters that provide a symbolic address for the access method control block that
is assembled. If you omit the DDNAME parameter, label serves as the ddname.

AM=VSAM
Specifies that the access method using this control block is VSAM.

BSTRNO=abs expression
Specifies the number of strings that are initially allocated for access to the base cluster of a path.
BSTRNO must be a number between 0 and 255. The default is STRNO. BSTRNO is ignored if the
object being opened is not a path. If the number that is specified for BSTRNO is insufficient, VSAM
dynamically extends the number of strings as needed for access to the base cluster.

BSTRNO can influence performance. The VSAM control blocks for the set of strings that is specified by
BSTRNO are allocated in contiguous virtual storage. This is not guaranteed for the strings allocated by
dynamic extension.

This parameter is only applicable to MACRF=NSR.

This parameter has no effect for UNIX files. This is the case when an application program uses the
VSAM interface to access a UNIX file.

BUFND=abs expression
Specifies the number of I/O buffers that VSAM is to use for transmitting data between virtual and
auxiliary storage. A buffer is the size of a control interval in the data component. BUFND must be a
number between 0 and 65535. The minimum number that you can specify is 1 plus the number that is
specified for STRNO. (If you omit STRNO, BUFND must be at least 2, because the default for STRNO is
1.) The number can be supplied through the JCL DD AMP parameter and through the macro. The
default is the minimum number that is required. The minimum buffer specification does not provide
optimum sequential processing performance. Generally, the more data buffers that are specified, the
better the performance.

Additional data buffers benefit direct inserts or updates during control area splits and benefit spanned
record accessing. The maximum number of buffers that is allowed is currently 255 (254 data buffers
and 1 insert buffer). See z/OS DFSMS Using Data Sets for more information on optimizing performance
and system-managed buffering.

This parameter is applicable only to MACRF=NSR; it is ignored when MACRF=RLS is specified.

This parameter has no effect for UNIX files.

BUFNI=abs expression
Specifies the number of I/O buffers that VSAM is to use for transmitting the contents of index entries
between virtual and auxiliary storage for keyed access. A buffer is the size of a control interval in the
index. BUFNI must be a number between 0 and 65535. The minimum number is the number that is
specified for STRNO (if you omit STRNO, BUFNI must be at least 1, because the default for STRNO is
1). You can supply the number through the JCL DD AMP parameter and through the macro. The
default is the minimum number that is required.

Additional index buffers improve performance by providing for the residency of some or all of the
high-level index, thereby minimizing the number of high-level index records retrieved from DASD for
key-direct processing. For more information on optimizing performance, see z/OS DFSMS Using Data
Sets.

The default is the minimum number that is required. The maximum number of buffers allowed is
currently 255 (254 data buffers and 1 insert buffer).

This parameter is only applicable to MACRF=NSR.

This parameter has no effect for UNIX files.

BUFSP=abs expression
Specifies the maximum number of bytes of virtual storage to be used for the data and index I/O
buffers. VSAM gets the storage in your program's address space. If you specify less than the amount
of space that was specified in the BUFFERSPACE parameter of the DEFINE command when the data

ACB

122 z/OS: z/OS DFSMStvs Administration Guide

set was defined, VSAM overrides your BUFSP specification upward to the value that was specified in
BUFFERSPACE. (BUFFERSPACE, by definition, is the least amount of virtual storage that is ever
provided for I/O buffers.) However, if BUFSP is specified and the amount specified is much too small
— smaller than the minimum amount of buffer storage required to process the data set — VSAM
cannot open the data set. The minimum amount is described under BUFND and BUFNI, in the
preceding text.

You can supply BUFSP through the JCL DD AMP parameter and through the macro. If you do not
specify BUFSP in either place, the amount of storage that is used for buffer allocation is the largest of
the following amounts:

• Amount that is specified in the catalog (BUFFERSPACE)
• Amount that is determined from BUFND and BUFNI
• Minimum storage that is required to process the data set with its specified processing options

A valid BUFSP amount takes precedence over the amount BUFND and BUFNI call for. If the BUFSP
amount is greater than the amount called for by BUFND and BUFNI, the extra space is allocated under
the following conditions:

• When MACRF indicates direct access only, additional index buffers are allocated.
• When MACRF indicates sequential access, one additional index buffer and as many data buffers as

possible are allocated.

If the BUFSP amount is less than the amount that is called for by BUFND and BUFNI, the number of
data and index buffers is decreased under the following conditions:

• When MACRF indicates direct access only, the number of data buffers is decreased to not fewer
than the minimum number. Then, if required, the number of index buffers is decreased until the
amount called for by BUFND and BUFNI complies with the BUFSP amount.

• When MACRF indicates sequential access, the number of index buffers is decreased to not fewer
than 1 more than the minimum number. Then, if required, the number of data buffers is decreased
to not fewer than the minimum number. If still required, 1 more is subtracted from the number of
index buffers.

• Neither the number of data buffers nor the number of index buffers is decreased to fewer than the
minimum number.

If the index does not exist or is not being opened, only BUFND, and not BUFNI, enters these
calculations.

The BUFFERSPACE must not exceed 16776704.

This parameter is applicable only to MACRF=NSR; it is ignored when MACRF=RLS is specified.

This parameter has no effect for UNIX files.

DDNAME=character string
Specifies 1 to 8 characters that identify the data set you want to process by specifying the JCL DD
statement for the data set. You may omit DDNAME and provide it through the label or through the
MODCB macro before opening the data set. MODCB is described in “MODCB—modify an access
method control block” on page 148.

If you code CTRLACB=YES, do not code DDNAME. Otherwise, the DDNAME value must come from
some source.

EXLST=address
Specifies the address of a list of addresses of exit routines that you are providing. The list must be
established by the EXLST or GENCB macro. If you use the EXLST macro, you can specify its label here
as the address of the exit list. If you use GENCB, you can specify the address returned by GENCB in
register 1 or the label of an area you supplied to GENCB for the exit list.

To use the exit list, you must code this EXLST parameter. Omitting this parameter means that you
have no exit routines. Exit routines are described in z/OS DFSMS Using Data Sets.

ACB

Chapter 3. Customizing the DFSMStvs environment 123

MACRF=([ADR][,CNV][,KEY]
 [,CFX|NFX]
 [,DDN|DSN]
 [,DFR|NDF]
 [,DIR][,SEQ][,SKP]
 [,ICI|NCI]
 [,IN][,OUT]
 [,LEW|NLW]
 [,NIS|SIS]
 [,NRM|AIX]
 [,NRS|RST]
 [,NSR|LSR|GSR|RLS]
 [,NUB|UBF])

Specifies the kinds of processing you will do with the data set. The subparameters must be significant
for the data set. For example, if you specify keyed access for an entry-sequenced data set (ESDS), you
cannot open the data set. You must specify all the types of access you are going to use, whether you
use them concurrently or by switching from one to the other. Table 19 on page 124 gives the
subparameters. Each group of subparameters has a default value (shown by underlining). You can
specify subparameters in any order. You can specify both ADR and KEY to process a key-sequenced
data set (KSDS). You can specify both DIR and SEQ; with keyed access, you may specify SKP as well.
If you specify OUT and want merely to retrieve some records and also update, delete, or insert others,
you need not also specify IN.

Table 19. MACRF options. MACRF options

Option Meaning

ADR Addressed access to a key-sequenced or entry-sequenced data set; RBAs are used as
search arguments and sequential access is by entry sequence. VSAM RLS and
DFSMStvs do not support ADR access to a KSDS.

CNV Access is to the entire contents of a control interval rather than to an individual data
record. If the data set is password protected, you must supply the address of the
control or higher-level password in the ACB PASSWD parameter.

Recommendation: Use RACF®, a component of the z/OS Security Server, or a
functionally equivalent program instead of VSAM passwords.

For VSAM RLS and DFSMStvs, CNV is invalid. This parameter is invalid for UNIX files
and if it is specified, results in an OPEN failure.

KEY Keyed access to a relative record data set (RRDS) or key-sequenced data set. Keys or
relative record numbers are used as search arguments and sequential access is by key
or relative record number. KEY processing is not affected by VSAM RLS or DFSMStvs.

CFX OPEN fixes control blocks and I/O buffers, and they remain fixed until the ACB is
closed.

For VSAM RLS and DFSMStvs, CFX is ignored and NFX is assumed. This subparameter
has no effect for UNIX files.

NFX OPEN fixes control blocks and I/O buffers, and they remain fixed until the ACB is
closed. For VSAM RLS and DFSMStvs, NFX is assumed.

DDN Subtask shared control block connection is based on common ddnames. For VSAM
RLS and DFSMStvs, DDN is ignored. This subparameter has no effect for UNIX files.

DSN Subtask shared control block connection is based on common data set names. For
VSAM RLS and DFSMStvs, DSN is ignored. This subparameter has no effect for UNIX
files.

ACB

124 z/OS: z/OS DFSMStvs Administration Guide

Table 19. MACRF options. MACRF options (continued)

Option Meaning

DFR With shared resources, writes for direct PUT requests are deferred until the WRTBFR
macro is issued or until VSAM needs a buffer to satisfy a GET request. Deferring writes
saves I/O requests in cases where subsequent requests can be satisfied by the data
already in the buffer pool. For VSAM RLS and DFSMStvs, DFR is ignored and direct
request modified buffers are immediately written to disk and the CF (coupling facility).
This subparameter has no effect for UNIX files.

NDF Writes are not deferred for direct PUTs. For VSAM RLS and DFSMStvs, NDF is ignored
and direct request modified buffers are immediately written to disk and the CF
(coupling facility).

DIR Direct access to an RRDS, KSDS, or ESDS.

SEQ Sequential access to an RRDS, KSDS, or ESDS.

SKP Skip-sequential access to an RRDS or KSDS. Used only with keyed access in a forward
direction.

ICI Processing is limited to improved control interval processing; access is faster because
fewer processor instructions are executed. ICI processing is not allowed for extended
format data sets.

For VSAM RLS and DFSMStvs, ICI is invalid. This parameter is invalid for UNIX files and
if specified, results in an open failure.

NCI Processing other than improved control interval processing.

IN Retrieval of records of a RRDS, KSDS, or ESDS; (not allowed for an empty data set). If
the data set is password protected, you must supply the address of the read or higher-
level password in the ACB PASSWD parameter.

OUT Storage of new records in a RRDS, KSDS, or ESDS (not allowed with addressed access
to a KSDS). Update of records in a RRDS, KSDS, or ESDS. Deletion of records from a
RRDS or KSDS.

If the data set is password protected, you must supply the address of the update or
higher-level password in the ACB PASSWD parameter.

LEW Using LSR, if an exclusive control conflict is encountered, VSAM defers the request
until the resource becomes available. For VSAM RLS and DFSMStvs, LEW is ignored.

NLW With this value specified, instead of deferring the request, VSAM returns the exclusive
control return code 20 (X'14') to the application program. The application program is
then able to determine the next action. For VSAM RLS and DFSMStvs, NLW is ignored.

NIS Normal insert strategy. This subparameter has no effect for UNIX files.

SIS Sequential insert strategy (split control intervals and control areas at the insert point
rather than at the midpoint when doing direct PUTs); although positioning is lost and
writes are done after each direct PUT request, SIS allows more efficient space usage
when direct inserts are clustered around certain keys. This subparameter has no effect
for UNIX files.

NRM The object to be processed is the one named in the specified ddname. For VSAM RLS
and DFSMStvs, NRM does not allow the direct open of an alternate index.

AIX The object to be processed is the alternate index of the path specified by ddname,
rather than the base cluster through the alternate index. For VSAM RLS and DFSMStvs,
the AIX subparameter is invalid. This subparameter has no effect for UNIX files.

NRS Data set is not reusable.

ACB

Chapter 3. Customizing the DFSMStvs environment 125

Table 19. MACRF options. MACRF options (continued)

Option Meaning

RST Data set is reusable (high-used RBA is reset to 0 during OPEN). If the data set is
password protected, you must supply the address of the update or higher-level
password in the ACB PASSWD parameter.

NSR Nonshared resources.

LSR Local shared resources. Each address space can have up to 256 index resource pools
and 256 data resource pools independent of other address spaces. Unless you are
using the default, SHRPOOL=0, you must specify the SHRPOOL parameter to indicate
which resource pool you are using. Specifying LSR causes a data set to use the local
resource pool built by the BLDVRP macro. If an index resource pool exists at the time
an OPEN macro is issued, the index for a KSDS is connected to the index resource
pool. This parameter is invalid for UNIX files and if it is specified, results in an open
failure.

GSR Global shared resources; all address spaces can have local and global resources pools,
and each task in an address space with a local resource pool can use either the local
resource pool or the global resource pool. This parameter is invalid for UNIX files and if
it is specified, results in an open failure. This parameter is invalid for compressed
format data sets.

RLS While a data set can be accessed using both VSAM RLS and DFSMStvs simultaneously,
it is not possible to access a data set simultaneously with both VSAM RLS or DFSMStvs
protocols and NSR/LSR/GSR protocols. VSAM enforces this restriction. VSAM RLS and
DFSMStvs imply that VSAM uses cross-system record-level locking as opposed to CI
locking, uses CF for buffer consistency, and manages a system-wide local cache. Both
VSAM RLS and DFSMStvs do not support the following data set features:

• Linear data sets
• ADR access to a KSDS
• CNV access to any data set organization
• Data sets defined with imbedded indexes

This parameter is invalid for UNIX files and if it is specified, results in an open failure.

NUB Management of I/O buffers is left up to VSAM. For VSAM RLS and DFSMStvs, you must
specify NUB.

UBF Management of I/O buffers is left up to the user. The work area specified by the RPL
(or GENCB) AREA parameter is the I/O buffer. VSAM transmits the contents of a
control interval directly between the work area and direct access storage. UBF is valid
when OPTCD=MVE and MACRF=CNV are specified. When ICI is specified, UBF is
assumed. For VSAM RLS and DFSMStvs, UBF is invalid.

MAREA=address
Specifies the address of an optional OPEN/CLOSE or TYPE=T option (CLOSE macro) message
area.MAREA is ignored for VSAM RLS and DFSMStvs.

MLEN=abs expression
Specifies the length of an optional OPEN/CLOSE or TYPE=T option (CLOSE macro) message area. The
default is 0. The maximum length is 32KB. MLEN is ignored for RLS.

PASSWD=address
Specifies the address of a field containing the highest-level password required for the types of access
indicated by the MACRF parameter. The first byte of the field pointed to contains the length (in binary)
of the password (maximum of 8 bytes). Zero indicates that no password is supplied. If the data set is
password protected and you do not supply a required password in the access method control block,
VSAM gives the console operator the opportunity to supply it when you open the data set.

ACB

126 z/OS: z/OS DFSMStvs Administration Guide

Data sets that are opened for RLS processing must be SMS-managed data sets that are cataloged and
have password processing set to be ignored.

This parameter has no effect for UNIX files.

RLSREAD={NRI|CR|CRE|NORD}
Specifies the read integrity option that applies to GET requests that are issued against this ACB. This
parameter overrides the read integrity option that is specified in the RLS JCL parameter. You can
override the RLSREAD parameter for a specific GET request by specifying the read integrety option in
the RPL OPTCD parameter.

For DFSMStvs, you can specify CRE. If you use CRE for DFSMStvs access, specify CRE in the JCL or the
ACB. Those requests that do not require CRE can be overridden by the value that is specified in the
RPL.

NRI
Specifies no read integrity. NRI is a performance option. When you specify NRI, VSAM does not
obtain a lock on the record.

CR
Specifies consistent read integrity. CR ensures that only records that have been committed are
read.

CRE
Specifies consistent read explicit. It can only be specified with MACRF=RLS. When it is specified,
DFSMStvs access is used. This locking allows the application to inhibit update or erase of the
record by other transactions or applications until commit or backout.

NORD
Specifies that the read integrity option that is used is determined either by the RLS JCL
specification or by options that are specified on the GET request.

For access modes other than RLS or DFSMStvs, RLSREAD is ignored.

RMODE31=[ALL|BUFF|CB|NONE]
Specifies where VSAM OPEN obtains virtual storage (above or below 16 megabytes) for control blocks
and I/O buffers.

The values specified by the RMODE31 parameter have an effect on VSAM only at the setting just
before an OPEN is issued. At all other times, changing these values has no effect on the residency of
the control blocks and I/O buffers.

If MACRF=RLS is specified, RMODE31=ALL is assumed. For RLS and DFSMStvs, VSAM control blocks
and buffers are located in a data space owned by the SMSVSAM server address space and are not
directly addressable.

RMODE31= can also be specified in the JCL AMP parameter.
ALL

Specifies that both VSAM control blocks and I/O buffers are obtained above 16 megabytes.
BUFF

Specifies that only VSAM I/O buffers are obtained above 16 megabytes.
CB

Specifies that only VSAM control blocks are obtained above 16 megabytes.
NONE

Specifies that both I/O buffers and VSAM control blocks are built below 16 megabytes. This is the
default.

SHRPOOL={abs expression|0}
Specifies which LSR pool is connected to the ACB. This parameter is valid only when MACRF=LSR is
also specified. SHRPOOL must be a number between 0 and 255. The default is 0.

STRNO=abs expression
Specifies the number of requests requiring concurrent data set positioning that VSAM is prepared to
handle. STRNO must be a number between 1 and 255. The default is 1. A request is defined by a given

ACB

Chapter 3. Customizing the DFSMStvs environment 127

request parameter list or chain of request parameter lists. The string number is equal to the number
of requests issued concurrently for all the data sets sharing the resource pool. See “RPL—generate a
request parameter list at assembly time” on page 152 and “GENCB—generate a request parameter
list at execution time” on page 140 for information on request parameter lists. When records are
loaded into an empty data set, the STRNO value in the access method control block must be 1.

VSAM dynamically extends the number of strings as they are needed by concurrent requests for this
ACB. This automatic extension can influence performance. The VSAM control blocks for the set of
strings specified by STRNO are allocated on contiguous virtual storage, but this is not guaranteed for
the strings allocated by dynamic extension. Dynamic string addition cannot be done when using the
following options:

• Load mode
• ICI
• LSR or GSR.

For STRNO, you should specify the total number of request parameter lists or chains of request
parameter lists that you are using to define requests. (VSAM needs to remember only one position for
a chain of request parameter lists.) However, each position beyond the minimum number that VSAM
needs to be able to remember requires additional virtual storage space for these parameters:

• A minimum of one data I/O buffer and, for keyed access, one index I/O buffer (the size of an I/O
buffer is the control interval size of a data set)

• Internal control blocks and other areas

For RLS, STRNO is ignored. Strings are dynamically acquired up to a limit of 1024.

STRNO >1 is not supported for UNIX files. If you specify a value greater than 1, OPEN fails.

SUBSYSNM=address
For VSAM RLS and DFSMStvs, specifies the address of the subsystem name (mapped by IFGSYSNM
and unique to the Parallel Sysplex). This parameter specifies a commit protocol application, which
supports online transaction processing subsystems. When SUBSYSNM is specified, you must specify
LUWID for all RPL requests against the ACB. The subsystem name is valid only for RLS or DFSMStvs
processing; otherwise, it is ignored.

SUBSYSNM is used by CICS to specify a unique name for the CICS region. This name and the RPL
LUWID are used by RLS to form the lock owner name for record locks obtained for CICS transactions.

CTRLACB={YES |NO}
For RLS, specifies whether the opened ACB is to be used as a control ACB.

This facility is used by commit protocol applications (for example, CICS) for certain record
management requests and in support of an RLS sphere quiesce.
YES

Specifies that the ACB is to be used as a control ACB. The ACB cannot specify a DDNAME, but
SUBSYSNM must be specified. The control ACB is also required to have an associated EXLST that
specifies a QUIESCE exit. For applications that use DFSMStvs, YES should not be specified.

NO
Specifies the ACB is not to be used as a control ACB. The default is NO.

CTRLACB is ignored if RLS processing is not specified.

Example 1: ACB macro

In this example, the ACB macro is used to identify a data set to be opened and to specify the types of
processing to be performed. The access method control block generated by this example is built when
the program is assembled.

BLOCK ACB AM=VSAM,BUFND=4, BLOCK gives symbolic x
 BUFNI=3, address of the access x
 BUFSP=19456, method control block. x
 DDNAME=DATASETS, x

ACB

128 z/OS: z/OS DFSMStvs Administration Guide

 EXLST=EXITS, x
 MACRF=(KEY,DIR,SEQ,OUT), x
 STRNO=2

The parameters of the ACB macro follow:

• BUFND specifies four I/O buffers for data. BUFNI specifies three I/O buffers for index entries. BUFSP
specifies 19456 bytes of buffer space, enough space to accommodate control intervals of data that are
4096 bytes and control intervals of index entries that are 1024 bytes.

• DDNAME specifies this access method control block is associated with a DD statement named
DATASETS.

• EXLST specifies the exit list associated with this access method control block is named EXITS.
• MACRF specifies keyed-direct and keyed-sequential processing for both insertion and update.
• STRNO specifies two requests will require concurrent positioning.
• Since the type of resources are not specified, NSR is assumed.

Example 2: ACB macro

In this example, the ACB macro is used to identify a data set to be opened and to specify the types of
processing to be performed. The access method control block generated by this example is built when
the program is assembled. The caller requests that the VSAM control blocks and I/O buffers be obtained
above 16 megabytes, if possible.

BLOCK2 ACB AM=VSAM, BLOCK2 gives symbolic x
 DDNAME=DATASETS, address of the access x
 EXLST=EXITS, method control block. x
 MACRF=(KEY,DIR,SEQ,OUT), x
 RMODE31=ALL

The ACB macro's parameters follow:

• DDNAME specifies that this access method control block is associated with a DD statement named
DATASETS.

• EXLST specifies that the exit list associated with this access method control block is named EXITS.
• MACRF specifies keyed-direct and keyed-sequential processing for both insertion and update.
• RMODE31=ALL specifies that both VSAM control blocks and buffers can reside above 16 megabytes.
• Because the type of resources is not specified, NSR is assumed.

EXLST—generate an exit list at assembly time
Use the EXLST macro to generate an exit list at assembly time. Values for EXLST macro subparameters
can be specified as absolute numeric expressions, character strings, codes, and expressions that
generate valid relocatable A-type address constants.

See z/OS DFSMS Using Data Sets for the factors that determine the addressing mode and the parameter
list residency mode set when the exit routine gets control.

EXLST macro syntax

The format of the EXLST macro follows.

EXLST macro syntax

Chapter 3. Customizing the DFSMStvs environment 129

The format of the EXLST macro.

Label Operand Parameters

[label] EXLST [AM= VSAM]
[,EODAD=(address[,A|N][,L])]
[,JRNAD=(address[,A|N][,L])]
[,LERAD=(address[,A|N][,L])]
[,SYNAD=(address[,A|N][,L])]
[,UPAD=(address[,A|N][,L])]
[,QUIESCE=(address[,A|N][,L])]
[RLSWAIT=(address[,A|N][,L])]

label
Specifies 1 to 8 characters that provide a symbolic address for the established exit list.

AM=VSAM
Specifies that the access method using the control block is VSAM.

EODAD=(address[,A|N][,L])
JRNAD=(address[,A|N][,L])
LERAD=(address[,A|N][,L])
SYNAD=(address[,A|N][,L])
UPAD=(address[,A|N][,L])
RLSWAIT=(address[,A|N][,L])

specify that you are supplying a routine for the exit specified.

For more information about user exit routines, see z/OS DFSMS Using Data Sets.

The exits and values that can be specified for these routines are:
EODAD

Specifies that an exit is provided for special processing when the end of a data set is reached by
sequential access.

JRNAD
Specifies that an exit is provided for journalizing transactions as you process data records. For
VSAM RLS or DFSMStvs, JRNAD is not supported and you receive an error if you open the ACB.
This parameter has no effect for UNIX files.

LERAD
Specifies that an exit is provided for analyzing logical errors.

SYNAD
Specifies that an exit is provided for analyzing physical errors.

UPAD
Specifies that an exit is provided for user processing during a VSAM request. The GENCB, MODCB,
SHOWCB, and TESTCB macros do not support the UPAD user exit routine. For VSAM RLS and
DFSMStvs, UPAD is ignored and the RLSWAIT exit is used instead. This parameter has no effect for
UNIX files.

QUIESCE
If RLS is specified, this exit is used to notify the application of a quiesce condition. The exit must
be associated with a control ACB and is required for commit protocol applications. If the QUIESCE
exit is associated with an ACB other than a control ACB, the exit is ignored.

This exit is entered in 31 bit mode.

The QUIESCE exit is always considered to be active. The A|N parameters are ignored for the
QUIESCE exit.

RLSWAIT
For VSAM RLS and DFSMStvs, this exit is used instead of UPAD. If you specify a UPAD exit for RLS
or DFSMStvs, it is ignored. The RLSWAIT exit is specified on an ACB basis and is entered in 31–bit
mode. When the exit is to be used for a record management request the RPL must specify

EXLST macro syntax

130 z/OS: z/OS DFSMStvs Administration Guide

OPTCD=(SYN,WAITX). The RLSWAIT exit is entered after an asynchronous execution unit is
scheduled to process the request. The exit is intended for those applications which issue VSAM
RLS requests and can not tolerate VSAM suspending the execution unit which issued the record
management request.

address
Specifies the address of a user-supplied exit routine or an I/O prevention identifier. The address must
immediately follow the equal sign.

A|N
Specifies that the exit routine is active (A) or not active (N). VSAM does not enter a routine whose exit
is marked not active.

L
Specifies that the address is an 8-byte field containing the name of an exit routine in a partitioned
data set identified by a JOBLIB or STEPLIB DD statement or in SYS1.LINKLIB. VSAM loads the exit
routine for exit processing. If L is omitted, the address gives the entry point of the exit routine in
virtual storage, and the exit routine is entered in the addressing mode of the VSAM caller. except for
the QUIESCE exit.

Requirement: The EXLST macro generates an exit list with each entry 5 bytes in length. You must
consider the proper alignment of any subsequent data.

Example: EXLST macro

An EXLST macro is used to identify exit routines provided for analyzing logical and physical errors. The
label of the EXLST macro (EXITS) is used in an ACB or GENCB macro that generates an access method
control block to associate the exit list with an access method control block. The exit list generated by this
example is built when the program is assembled.

EXITS EXLST EODAD=(ENDUP,N), EXITS gives symbolic address x
 LERAD=LOGICAL, of the exit list. x
 SYNAD=(ROUTNAME,L)
ENDUP EODAD routine.
LOGICAL LERAD routine.
ROUTNAME DC C'PHYSICAL' Pad shorter names with x
 blanks:C'SYN ' or CL8'SYN'.

The parameters of the EXLST macro follow:

• EODAD specifies that the end-of-data routine is located at ENDUP and is not active.
• LERAD specifies that the logical error routine is located at LOGICAL and is active.
• SYNAD specifies that the physical error routine's name is located at ROUTNAME.

GENCB—generate an access method control block at execution time
The format of the GENCB macro used to generate an access method control block follows.

GENCB—ACB

Chapter 3. Customizing the DFSMStvs environment 131

The format of the GENCB macro used to generate an access method control block.

Label Operand Parameters

[label] GENCB BLK=ACB
[,AM=VSAM]
[,BSTRNO=abs expression]
[,BUFND=abs expression]
[,BUFNI=abs expression]
[,BUFSP=abs expression]
[,COPIES=abs expression]
[,DDNAME=character string]
[,EXLST= address]
[,LENGTH=abs expression]
[,LOC=BELOW|ANY]
[,MACRF=([ADR][,CNV] [,KEY]
 [,CFX|NFX]
 [,DDN|DSN]
 [,DFR|NDF]
 [,DIR][,SEQ][,SKP]
 [,ICI|NCI]
 [,IN][,OUT]
 [,LEW|NLW]
 [,NIS|SIS]
 [,NRM|AIX]
 [,NRS|RST]
 [,NSR|LSR|GSR|RLS]
 [,NUB|UBF])]
[,MAREA=address]
[,MLEN=abs expression]
[,PASSWD=address]
[,RMODE31={ALL|BUFF|CB|NONE}]
[,SHRPOOL={0|abs expression}]
[,STRNO=abs expression]
[,SUBSYSNM=address]
[,CTRLACB={YES|NO}]
[,RLSREAD={NRI|CR|CRE|NORD}]
[,WAREA=address]

The subparameters of the GENCB macro can be expressed as absolute numeric expressions, as character
strings, as codes, as expressions that generate valid relocatable A-type address constants, in register
notation, as S-type address constants, and as indirect S-type address constants. “Subparameters with
GENCB, MODCB, SHOWCB, and TESTCB” on page 117, further defines these operand expressions.
label

Specifies 1 to 8 characters that provide a symbolic address for the GENCB macro.
BLK=ACB

Specifies that you are generating an access method control block.
AM=VSAM

Specifies that the access method using this control block is VSAM.
BSTRNO=abs expression

Specifies the number of strings initially allocated for access to the base cluster of a path. BSTRNO
must be a number between 0 and 255. The default is STRNO. BSTRNO is ignored if the object being
opened is not a path. If the number specified for BSTRNO is insufficient, VSAM dynamically extends
the number of strings as needed for the access to the base cluster. BSTRNO can also influence
performance. The VSAM control blocks for the set of strings specified by BSTRNO are allocated on
contiguous virtual storage, whereas this is not guaranteed for the strings allocated by dynamic
extension.

For VSAM RLS and DFSMStvs, BSTRNO is ignored. This parameter has no effect for UNIX files.

GENCB—ACB

132 z/OS: z/OS DFSMStvs Administration Guide

BUFND=abs expression
Specifies the number of I/O buffers VSAM uses for transmitting data between virtual and auxiliary
storage. A buffer is the size of a control interval in the data component. BUFND must be a number
between 0 and 65535. The minimum number you may specify is 1 plus the number specified for
STRNO (if you omit STRNO, BUFND must be at least 2 because the default for STRNO is 1). The
number can be supplied through the JCL DD AMP parameter and through the macro. The default is the
minimum number required. A larger number for BUFND can improve the performance of sequential
access.

For VSAM RLS and DFSMStvs, BUFND is ignored. This parameter has no effect for UNIX files.

BUFNI=abs expression
Specifies the number of I/O buffers VSAM uses for transmitting index entries between virtual and
auxiliary storage for keyed access. A buffer is the size of a control interval in the index. BUFNI must be
a number between 0 and 65535. The minimum number is the number specified for STRNO (if you
omit STRNO, BUFNI must be at least 1 because the default for STRNO is 1). You can supply the
number through the JCL DD AMP parameter and through the macro. The default is the minimum
number required. A larger number for BUFNI can improve the performance of keyed-direct retrieval.

For VSAM RLS and DFSMStvs, BUFNI is ignored. This parameter has no effect for UNIX files.

BUFSP=abs expression
Specifies the maximum number of bytes of virtual storage used for the data and index I/O buffers.
VSAM gets the storage in your program's address space. If you specify less than the amount of space
specified in the BUFFERSPACE parameter of the DEFINE command when the data set was defined,
VSAM overrides your BUFSP specification upward to the value specified in BUFFERSPACE.
(BUFFERSPACE, by definition, is the least amount of virtual storage that is ever provided for I/O
buffers.) You can supply BUFSP through the JCL DD AMP parameter and through the macro. If you do
not specify BUFSP in either place, the amount of storage used for buffer allocation is the largest of:

• The amount specified in the catalog (BUFFERSPACE),
• The amount determined from BUFND and BUFNI, or
• The minimum storage required to process the data set with its specified processing options.

If BUFSP is specified and the amount is smaller than the minimum amount of storage required to
process the data set, VSAM cannot open the data set.

A valid BUFSP amount takes precedence over the amount called for by BUFND and BUFNI. If the
BUFSP amount is greater than the amount called for by BUFND and BUFNI, the extra space is
allocated as follows:

• When MACRF indicates direct access only, additional index buffers are allocated.
• When MACRF indicates sequential access, one additional index buffer and as many data buffers as

possible are allocated.

If the BUFSP amount is less than the amount called for by BUFND and BUFNI, the number of data and
index buffers is decreased as follows:

• When MACRF indicates direct access only, the number of data buffers is decreased to not less than
the minimum number. Then, if required, the number of index buffers is decreased until the amount
called for by BUFND and BUFNI complies with the BUFSP amount.

• When MACRF indicates sequential access, the number of index buffers is decreased to not less than
1 more than the minimum number. Then, if required, the number of data buffers is decreased to not
less than the minimum number. If still required, 1 more is subtracted from the number of index
buffers.

• Neither the number of data buffers nor the number of index buffers is decreased to less than the
minimum number.

If the index does not exist or is not being opened, only BUFND, and not BUFNI, enters into these
calculations.

For VSAM RLS and DFSMStvs, BUFSP is ignored. This parameter has no effect for UNIX files.

GENCB—ACB

Chapter 3. Customizing the DFSMStvs environment 133

COPIES=abs expression
Specifies the number of copies of the access method control block VSAM generates. All the copies are
identical. Use MODCB to tailor the individual copies for particular data sets and processing. MODCB is
described in “MODCB—modify an access method control block” on page 148.

DDNAME=character string
Specifies 1 to 8 characters that identify the data set you want to process by specifying the JCL DD
statement for the data set. You may omit DDNAME and provide it through the MODCB macro before
opening the data set. MODCB is described in “MODCB—modify an access method control block” on
page 148.

EXLST=address
Specifies the address of a list of addresses of exit routines you are providing. The list is established by
the EXLST or GENCB macro. If you use the EXLST macro, you can specify its label here as the address
of the exit list. If you use GENCB, you can specify the address returned by GENCB in register 1.
Omitting this parameter indicates that you have no exit routines. VSAM user exit routines are
described in z/OS DFSMS Using Data Sets.

LENGTH=abs expression
Specifies the length, in bytes, of the area, if any, you are supplying for VSAM to generate the access
method control blocks. (See the WAREA parameter.) The LENGTH value cannot exceed 65535
(X'FFFF').

LOC={BELOW|ANY}
BELOW

Specifies that VSAM is to construct an ACB in an area of virtual storage below 16 megabytes at
execution time. This is the default.

ANY
Specifies that VSAM is to construct an ACB in an area of virtual storage above 16 megabytes, if
possible, at execution time.

MACRF=([ADR][,CNV][,KEY]
 [,CFX|NFX]
 [,DDN|DSN]
 [,DFR|NDF]
 [,DIR][,SEQ][,SKP]
 [,ICI|NCI]
 [,IN][,OUT]
 [,LEW|NLW]
 [,NIS|SIS]
 [,NRM|AIX]
 [,NRS|RST]
 [,NSR|LSR|GSR|RLS]
[,NUB|UBF])

Specifies the kinds of processing you will do with the data set. The subparameters must be significant
for the data set. For example, if you specify keyed access for an entry-sequenced data set, you cannot
open the data set. You must specify all the types of access you are going to use, whether you use
them concurrently or by switching from one to the other. The subparameters are shown in Table 19
on page 124. They are arranged in groups, and each group has a default value (shown by underlining).
You may specify subparameters in any order. You may specify both ADR and KEY to process a key-
sequenced data set. You may specify both DIR and SEQ; with keyed access, you may specify SKP as
well. If you specify OUT and want merely to retrieve some records and also update, delete, or insert
others, you need not also specify IN.

MAREA=address
Specifies the address of an optional OPEN/CLOSE or TYPE=T option (CLOSE macro) message area.

MAREA is ignored for VSAM RLS and DFSMStvs processing.

MLEN=abs expression
Specifies the length of an optional OPEN/CLOSE or TYPE=T option (CLOSE macro) message area.

GENCB—ACB

134 z/OS: z/OS DFSMStvs Administration Guide

MLEN is ignored for VSAM RLS and DFSMStvs processing.

PASSWD=address
Specifies the address of a field that contains the highest-level password required for the types of
access indicated by the MACRF parameter. The first byte of the field contains the length (in binary) of
the password (maximum of 8 bytes). Zero indicates that no password is supplied. If the data set is
password protected and you do not supply a required password in the access method control block,
VSAM may give the console operator the opportunity to supply it when you open the data set. This
parameter has no effect for UNIX files.

For VSAM RLS and DFSMStvs, data sets that are opened must be SMS data sets that are cataloged.

RMODE31={ALL|BUFF|CB|NONE}
Specifies where VSAM OPEN is to obtain virtual storage (above or below 16 megabytes) for control
blocks and I/O buffers.

The values specified by the RMODE31 parameter only have an effect on VSAM at the setting just
before an OPEN is issued. At all other times, changing these values has no effect on the residency of
the control blocks and I/O buffers.

The virtual storage location of the ACB is independent of the RMODE31 parameter. An ACB may
reside either above or below 16 megabytes.

For VSAM RLS and DFSMStvs, VSAM control blocks and buffers are located in a dataspace owned by
the SMSVSAM server address space and are not directly addressable.

RMODE31=ALL is assumed for VSAM RLS and DFSMStvs processing.
ALL

Specifies both VSAM control blocks and I/O buffers are obtained above 16 megabytes.
BUFF

Specifies only VSAM I/O buffers are obtained above 16 megabytes.
CB

Specifies only VSAM control blocks are obtained above 16 megabytes.
NONE

Specifies both VSAM control blocks and I/O buffers are obtained below 16 megabytes. This is the
default.

SHRPOOL={abs expression|0}
Specifies the identification number of the resource pool used for LSR processing. SHRPOOL must be a
number between 0 and 255. The default is SHRPOOL=0. For VSAM RLS and DFSMStvs, SHRPOOL is
ignored. This parameter has no effect for UNIX files.

STRNO=abs expression
Specifies the number of requests requiring concurrent data set positioning VSAM is prepared to
handle. A request is defined by a given request parameter list or chain of request parameter lists.
STRNO must be a number between 1 and 255. See “RPL—generate a request parameter list at
assembly time” on page 152 and “GENCB—generate a request parameter list at execution time” on
page 140 for information on request parameter lists.

For VSAM RLS and DFSMStvs, STRNO is ignored and strings are dynamically acquired up to a limit of
1024. STRNO > 1 is not supported for UNIX files and if it is specified with a value greater than 1,
results in an open failure.

SUBSYSNM=address
For VSAM RLS, specifies the address of the subsystem name (mapped by IFGSYSNM and unique to
the Parallel Sysplex). This parameter specifies a commit protocol application, which supports online
transaction processing subsystems. When SUBSYSNM is specified, you must specify LUWID for all
RPL requests against the ACB. The susbsystem name is valid only for RLS or DFSMStvs processing;
otherwise, it is ignored. For DFSMStvs, this parameter is filled in automatically.

SUBSYSNM is used by CICS to specify a unique name for the CICS region. This name and the RPL
LUWID are used by RLS to form the lock owner name for record locks obtained for CICS transactions.

GENCB—ACB

Chapter 3. Customizing the DFSMStvs environment 135

RLSREAD={NRI|CR|CRE|NORD}
For VSAM RLS and DFSMStvs, specifies the read integrity options that apply to GET requests issued
against this ACB. This parameter overrides the read integrity options specified in the RLS JCL
parameter. Read integrity options can also be specified on the GET request, when they override the
RLSREAD specification.

For DFSMStvs, you can specify CRE. Read integrity options can also be specified on the GET request,
in which case they override the RLSREAD specification, assuming that the parameter specified is
compatible with the type of access to the data set. For example, if the data set were open for RLS
access, rather than DFSMStvs access, it would not be valid to specify CRE later in the RPL. If you want
to use CRE for DFSMStvs access, specify CRE in the JCL or the ACB.

Those requests that do not require CRE can be overridden by the value specified in the RPL.

NRI
Specifies no read integrity. NRI is a performance option. When you specify NRI, VSAM does not
obtain a lock on the record.

CR
Specifies consistent read integrity. CR also ensures that only records that have been committed
are read.

CRE
Specifies consistent read explicit integrity. CRE can only be specified when MACRF=RLS. When
CRE is specified, DFSMStvs access is used. This locking enables the application to inhibit update
or erase of the record by other transactions or applications until commit or backout.

NORD
species the read integrity option used is determined either by the RLS JCL specification or by
options specified on the GET request.

For access modes other than RLS or DFSMStvs, , this parameter is ignored.

CTRLACB={YES |NO}
For VSAM RLS and DFSMStvs, specifies if the opened ACB is to be used as a control ACB.

This facility is used by commit protocol applications for certain record management requests and in
support of an RLS sphere quiesce.
YES

Specifies the ACB is to be used as a control ACB. The ACB can not specify a DDNAME but
SUBSYSNM must be specified. The control ACB is also required to have an associated EXLST that
specifies a QUIESCE exit.

YES should never be specified by an application using DFSMStvs.

NO
Specifies the ACB is not to be used as a control ACB. The default is NO.

If RLS is not specified, CTRLACB is ignored.

WAREA=address
Specifies the address of an area in which to generate the access method control blocks.

The area must begin on a fullword boundary.

This parameter is paired with the LENGTH parameter. You must supply the LENGTH parameter if you
specify an area address.

If you do not specify an area in which the access method control block is to be generated, VSAM
obtains virtual storage space for the area (as specified by the LOC=keyword). Subpool 0 will be
requested under the user's key and state. Users executing in key 0 and supervisor state will actually
be assigned subpool 252. VSAM returns the address of the area containing the control blocks in
register 1 and the length of the area in register 0. You can find out the length of each control block by
dividing the length of the area by the number of copies. The address of each control block can then be
calculated by this offset from the address in register 1. You can find the length of an access method
control block with the SHOWCB macro.

GENCB—ACB

136 z/OS: z/OS DFSMStvs Administration Guide

If you are generating control blocks by issuing several GENCBs, specifying an area (WAREA and
LENGTH parameters) for them enables you to address all of them with one base register and to avoid
repetitive requests for virtual storage.

Example 1: GENCB macro (generate an access method control block)

In this example, a GENCB macro is used to identify a data set to open and to specify the types of
processing to perform. This example specifies that the space for the control block be obtained above 16
megabytes. The access method control block generated by this example is built when the program is
executed.

GENCB GENCB BLK=ACB,AM=VSAM, One copy generated; VSAM gets the x
 BUFND=4,BUFNI=3, storage for it because the x
 BUFSP=19456, WAREA LENGTH parameters have x
 DDNAME=DATASETS, been omitted. x
 EXLST=EXITS, x
 LOC=ANY, x
 MACRF=(KEY,DIR, x
 SEQ,OUT), x
 RMODE31=ALL, x
 STRNO=2

 ST 1,ACBADDR Save the address of the access x
 method control block.
ACBADDR DS A The address of the access method x
 control block is saved in ACBADDR.

The parameters of the GENCB macro follow:

• BUFND specifies four I/O buffers for data. BUFNI specifies three I/O buffers for index entries. BUFSP
specifies 19456 bytes of buffer space, enough space to accommodate control intervals of data that are
4096 bytes and of index entries that are 1024 bytes.

• DDNAME specifies that this access method control block is associated with a DD statement named
DATASETS.

• EXLST specifies that the exit list associated with this access method control block is named EXITS.
• LOC specifies that VSAM obtain virtual storage for the ACB from an area that may be above 16

megabytes.
• MACRF specifies keyed direct and keyed sequential processing for both insertion and update.
• RMODE31 specifies that VSAM obtain storage for the VSAM control blocks and I/O buffers in an area

above 16 megabytes when the ACB is opened.
• STRNO specifies that two requests will require concurrent positioning.

Example 2: GENCB macro (generate an access method control block)

The access method control block (ACB) generated by this example is built when the program is executed.
In this example, the user provides the storage to contain the ACB. Because the generate form of the
macro is used, the GENCB parameter list is built in a remote area and passed to VSAM for action.

 LA 10,LEN1 Get length of the GENCB parameter
 list returned by the GENCB macro.
 GETMAIN R,LV=(10) Get storage for the area in which
 the GENCB parameter list is to
 be built.
 LR 2,1 Save addr of GENCB parameter-list
 area.
 LA 10,ACBLNGTH Get length of the ACB.

 GETMAIN R,LV=(10) Get storage for the area in which
 the ACB is to be built.
 LR 3,1 Save address of ACB area.

GENCB1 GENCB BLK=ACB,AM=VSAM, One copy generated; VSAM builds x
 BUFND=4,BUFNI=3, the ACB in the storage provided x
 BUFSP=19456, at the location pointed to by x
 DDNAME=DATASETS, WAREA. x
 LENGTH=ACBLNGTH, x
 MACRF=(KEY,DIR, x
 SEQ,OUT), x

GENCB—ACB

Chapter 3. Customizing the DFSMStvs environment 137

 RMODE31=ALL, x
 WAREA=(3), x
 MF=(G,(2),LEN1)
 .
 .
 .
ANYNAME DSECT KEEP ACB model out of CSECT
ACBSTART ACB AM=VSAM
ACBEND DS 0F
ACBLNGTH EQU ACBEND-ACBSTART

The parameters of the GENCB macro follow:

• BUFND specifies four I/O buffers for data. BUFNI specifies three I/O buffers for index entries. BUFSP
specifies 19456 bytes of buffer space, enough space to accommodate control intervals of data that are
4096 bytes and of index entries that are 1024 bytes.

• DDNAME specifies that this access method control block is associated with a DD statement named
DATASETS.

• LENGTH specifies that the length of the storage you provide for the ACB is the value of ACBLNGTH.
• MACRF specifies keyed direct and keyed sequential processing for both insertion and update.
• RMODE31 specifies that VSAM obtain storage for the VSAM control blocks and I/O buffers in an area

above 16 megabytes when the ACB is opened.
• WAREA specifies that the address of the storage you provide for the ACB is held in register 3.
• MF specifies that the GENCB parameter list is to be built in the location specified by register 2. Also, the

expansion of the GENCB macro will equate LEN1 to the length of the GENCB parameter list.

GENCB—generate an exit list at execution time
The format of the GENCB macro used to generate an exit list follows.

The format of the GENCB macro used to generate an exit list.

Label Operand Parameters

[label] GENCB BLK=EXLST
[,AM=VSAM]
[,COPIES=abs expression]
[,EODAD=(address[,A|N][,L])]
[,JRNAD=(address[,A|N][,L])]
[,LENGTH=abs expression]
[,LERAD=(address[,A|N][,L])]
[,LOC=BELOW|ANY]
[,SYNAD=(address[,A|N][,L])]
[,QUIESCE=(address[,A|N][,L])]
[,RLSWAIT=(address[,A|N][,L])]
[,WAREA=address]

The subparameters of the GENCB macro can be expressed as absolute numeric expressions, as character
strings, as codes, as expressions that generate valid relocatable A-type address constants, in register
notation, as S-type address constants, and as indirect S-type address constants. “Subparameters with
GENCB, MODCB, SHOWCB, and TESTCB” on page 117, further defines these operand expressions.

For the factors that determine the addressing mode and the parameter list residency mode set when the
exit routine gets control, see z/OS DFSMS Using Data Sets.

label
Specifies 1 to 8 characters that provide a symbolic address for the GENCB macro.

BLK=EXLST
Specifies that you are generating an exit list.

GENCB—ACB

138 z/OS: z/OS DFSMStvs Administration Guide

AM=VSAM
Specifies that the access method using this control block is VSAM.

[,EODAD=(address[,A|N][,L])]
[,JRNAD=(address[,A|N][,L])]
[,LERAD=(address[,A|N][,L])]
[,SYNAD=(address[,A|N][,L])]
[,RLSWAIT=(address[,A|N][,L])]

Specifies that you are supplying a routine for the exit named.

For more information about user exit routines, see z/OS DFSMS Using Data Sets.

If none of these user exit routines is specified, VSAM generates an exit list with inactive entries for all
the exits. The exits and values that can be specified for them are:
COPIES=abs expression

Specifies the number of copies of the exit list you want generated. GENCB generates as many
copies as you specify (default is 1) when your program is executed. All copies are the same. You
can use MODCB to change some or all of the addresses in a list. MODCB is described in “MODCB—
modify an access method control block” on page 148.

EODAD
Specifies that an exit is provided for special processing when the end of a data set is reached by
sequential access.

JRNAD
Specifies that an exit is provided for journaling as you process data records. For VSAM RLS and
DFSMStvs, JRNAD is not supported and you receive an error if you open the ACB. This parameter
has no effect for UNIX files.

LERAD
Specifies that an exit is provided for analyzing logical errors.

SYNAD
Specifies that an exit is provided for analyzing physical errors.

QUIESCE
Specifies that an exit is provided for quiescing RLS activity across the Parallel Sysplex.

RLSWAIT
Specifies that an exit is provided for wait processing. For VSAM RLS and DFSMStvs, the UPAD exit
is ignored if it is specified, and the RLSWAIT exit is used to perform a similar function.

address
Specifies the address of a user-supplied exit routine. The address must immediately follow the
equal sign.

A|N
Specifies that the exit routine is active (A) or not active (N). VSAM does not enter a routine whose
exit is marked not active.

L
Specifies the address is an 8-byte field containing the name of an exit routine in a partitioned data
set identified by a JOBLIB or STEPLIB DD statement or in SYS1.LINKLIB. VSAM is to load the exit
routine for exit processing. If L is omitted, the address gives the entry point of the exit routine in
virtual storage, and the exit routine is entered in the addressing mode of the VSAM caller. except
for the QUIESCE exit.

L might precede or follow the A or N specification.

LENGTH=abs expression
Specifies the length, in bytes, of the area, if any, that you are supplying for VSAM to generate the exit
lists. (See the WAREA parameter.) The LENGTH value cannot exceed 65535 (X'FFFF').

LOC=BELOW|ANY
BELOW

Specifies that VSAM is to construct an exit list in an area below 16 megabytes at execution time.

GENCB—ACB

Chapter 3. Customizing the DFSMStvs environment 139

ANY
Specifies that VSAM is to construct an exit list in an area above 16 megabytes, if possible, at
execution time.

WAREA=address
Specifies the address of an area in which to generate the exit lists.

If you did not specify an area in which the exit list is to be generated, VSAM obtains virtual storage
space for the area (as specified by the LOC=keyword). Subpool 0 will be requested under the user's
key and state. Users executing in key 0 and supervisor state will actually be assigned subpool 252.
VSAM returns the address of the area in which the exit lists is to be generated in register 1, and the
length of the area in register 0. You can find the length of each exit list by dividing the length of the
area by the number of copies. The address of each exit list can then be calculated by this offset from
the address in register 1. You can find the length of an exit list with the SHOWCB macro, described in
z/OS DFSMS Macro Instructions for Data Sets.

If you are generating control blocks by issuing several GENCBs, specifying an area (WAREA and
LENGTH) for them allows you to address all of them with one base register and to avoid repetitive
requests for virtual storage.

Example: GENCB macro (generate an exit list)

In this example, a GENCB macro is used to generate an exit list when the program is executed.

EXITS GENCB BLK=EXLST, x
 EODAD=(EOD,N), x
 LERAD=LOGICAL, x
 SYNAD=(ERROR, x
 A,L)

 LTR 15,15
 BNZ ERROR
 ST 1,EXLSTADR Address of the exit list is saved.
EOD EQU * EODAD routine.
LOGICAL EQU * LERAD routine.
ERROR DC C'PHYSICAL' Name of the SYNAD module.
EXLSTADR DS A Save area for exit-list address.

The GENCB macro's parameters are:

• BLK specifies an exit list is generated.
• EODAD specifies the end-of-data routine is located at EOD and is not active.
• LERAD specifies that the logical error routine is located at LOGICAL. Because neither A nor N is
specified, the LERAD routine is marked active by default.

• SYNAD specifies that the physical error routine's name is located at ERROR.

Because no area is specified in which the exit list is to be generated, VSAM obtains virtual storage for the
exit list and returns the address in register 1. Immediately after the GENCB macro, the address of the exit
list, contained in register 1, is moved to EXLSTADR. EXLSTADR may be specified in a GENCB macro that
generates an access method control block or in a MODCB, SHOWCB, or TESTCB macro that modifies,
displays, or tests fields in an exit list.

GENCB—generate a request parameter list at execution time

The format of the GENCB macro used to generate a request parameter list follows.

GENCB—RPL

140 z/OS: z/OS DFSMStvs Administration Guide

The format of the GENCB macro used to generate a request parameter list.

Label Operand Parameters

[label] GENCB BLK=RPL
[,ACB=address]
[,AM=VSAM]
[,AREA=address]
[,AREALEN=abs expression]
[,ARG=address]
[,COPIES=abs expression]
[,LUWID=address][,TIMEOUT=number]
[,ECB=address]
[,KEYLEN=abs expression]
[,LENGTH=abs expression]
[,LOC=BELOW|ANY]
[,MSGAREA=address]
[,MSGLEN=abs expression]
[,NXTRPL=address]
[,OPTCD=([ADR|CNV|KEY]
 [,DIR|SEQ|SKP]
 [,ARD|LRD]
 [,FWD|BWD]
 [,ASY|SYN]
 [,NSP|NUP|UPD]
 [,KEQ|KGE]
 [,FKS|GEN]
 [,LOC|MVE]
[,NRI|CR|CRE] [,NRI|CR|CRE [,RBA|XRBA])]
[,RECLEN=abs expression]
[,TRANSID=abs expression]
[,WAREA=address]

The subparameters of the GENCB macro can be expressed as absolute numeric expressions, as character
strings, as codes, as expressions that generate valid relocatable A-type address constants, in register
notation, as S-type address constants, and as indirect S-type address constants. “Subparameters with
GENCB, MODCB, SHOWCB, and TESTCB” on page 117, further defines these operand expressions.

The parameters of the GENCB macro to generate a request parameter list are optional sometimes, but
required in others. It is not necessary to omit parameters that are not required for a request; they are
ignored. Thus, if you switch from direct to sequential retrieval with a request parameter list, you do not
have to zero out the address of the field containing the search argument (ARG=address).
label

Specifies 1 to 8 characters that provide a symbolic address for the GENCB macro. For addressing lists
generated by GENCB, see the COPIES parameter.

BLK=RPL
Specifies that you are generating a request parameter list.

ACB=address
Specifies the address of the access method control block that identifies the data set to which access
will be requested. If you omit this parameter, you must issue MODCB to specify the address of the
access method control block before you issue a request. MODCB is described in “MODCB—modify an
access method control block” on page 148.

AM=VSAM
Specifies that the access method using this control block is VSAM.

AREA=address
Specifies the address of a work area to and from which VSAM moves a data record if you request it to
do so (with the RPL parameter OPTCD=MVE). If you request that records be processed in the I/O
buffer (OPTCD=LOC), VSAM puts into this work area the address of a data record within the I/O buffer.

GENCB—RPL

Chapter 3. Customizing the DFSMStvs environment 141

AREALEN=abs expression
Specifies the length, in bytes, of the work area whose address is specified by the AREA parameter. Its
minimum for OPTCD=MVE is the size of a data record (or the largest data record, for a data set with
records of variable length). For OPTCD=LOC, the area should be 4 bytes to contain the address of a
data record within the I/O buffer.

ARG=address
Specifies the address of a field containing the search argument for direct retrieval, skip-sequential
retrieval, and positioning. For a fixed-length or variable-length RRDS, the ARG field must be 4 bytes
long. For direct or skip-sequential processing, this field contains your search argument, a relative
record number. For sequential processing (OPTCD=(KEY,SEQ)), the 4 bytes are required for VSAM to
return the feedback RRN. For keyed access (OPTCD=KEY), the search argument is a full or generic
key. For addressed access (OPTCD=ADR), the search argument is an RBA. If you specify a generic key
(OPTCD=GEN), you must also specify in the KEYLEN parameter how many of the bytes of the full key
you are using for the generic key.

COPIES=abs expression
Specifies the number of copies of the request parameter list to generate. GENCB generates as many
copies as you specify (default is 1) when your program is executed.

The copies of a request parameter list can be used to:

• Chain lists together to gain access to many records with one request
• Define many requests to gain access to many parts of a data set concurrently.

All copies generated are identical; you must use MODCB to tailor them to specific requests. MODCB is
described in “MODCB—modify an access method control block” on page 148.

ECB=address
Specifies the address of an event control block (ECB) that you may supply. VSAM indicates in the ECB
whether a request is complete or not (using standard completion codes, which z/OS MVS System
Codes describes). You can use the ECB to determine that an asynchronous request is complete before
issuing a CHECK macro. This parameter is always optional.

KEYLEN=abs expression
Specifies the length, in bytes, of the generic key (OPTCD=GEN) you are using for a search argument
(given in the field addressed by the ARG parameter). This parameter is required with a search
argument that is a generic key. The number can be 1 through 255. For full-key searches, VSAM knows
the key length, which is taken from the catalog definition of the data set when you open the data set.
This parameter has no effect for UNIX files.

LUWID=luwid
For &rls only, logical unit of work identifier. The LUWID together with the SUBSYSNM (specified when
the ACB is OPENed) forms the ownership for record locks. CICS uses the LUWID parameter to pass a
CICS transaction identifier to RLS. A non-CICS application does not specify the LUWID parameter.
VSAM assigns a single LUWID for all requests issued by a non-CICS application.

LENGTH=abs expression
Specifies the length, in bytes, of the area, if any, that you are supplying for VSAM to generate the
request parameter lists. (See the WAREA parameter.) The LENGTH value cannot exceed 65535
(X'FFFF').

You can find out how long a request parameter list is with the SHOWCB macro, described in z/OS
DFSMS Macro Instructions for Data Sets.

LOC=BELOW|ANY
BELOW

Specifies that storage for the RPL be obtained from virtual storage below 16 megabytes.
ANY

Specifies that storage be obtained from virtual storage above 16 megabytes if possible.

GENCB—RPL

142 z/OS: z/OS DFSMStvs Administration Guide

MSGAREA=address
Specifies the address of an area you are supplying for VSAM to send you a message if a physical error
occurs. The format of a physical error message is given under “Reason code (physical errors)” on page
189 in the topic “Understanding VSAM macro return and reason codes” on page 167.

MSGLEN=abs expression
Specifies the size, in bytes, of the message area indicated in the MSGAREA parameter. The size of a
message is 128 bytes. If you provide less than 128 bytes, no message is returned to your program.
This parameter is required when MSGAREA is coded.

NXTRPL=address
Specifies the address of the next request parameter list in a chain. Omit this parameter from the
macro that generates the only or last list in the chain. When you issue a request defined by a chain of
request parameter lists, indicate in the request macro the address of the first parameter list in the
chain. A single request macro can be defined by multiple request parameter lists. For example, a GET
can cause VSAM to retrieve two or more records. This parameter has no effect for UNIX files and if it is
specified with a non-zero value, results in an error on a subsequent GET, PUT, or POINT.

OPTCD=([ADR|CNV|KEY]
 [,DIR|SEQ|SKP]
 [,ARD|LRD]
 [,FWD|BWD]
 [,ASY|SYN]
 [,NSP|NUP|UPD]
 [,KEQ|KGE]
 [,FKS|GEN]
 [,LOC|MVE])
[,UPD[,KL|NOKL]]
[,CR|CRE|NRI]
 [,CR|CRE|NRI]
 [,RBA|XRBA])

Specifies the subparameters that govern the request defined by the request parameter list. Each
group of subparameters has a default; subparameters are shown in Table 20 on page 155 with
defaults underlined. Only one subparameter from each group is effective for a request. Some requests
do not require an subparameter from all of the groups to be specified. The groups that are not
required are ignored. Thus, you can use the same request parameter list for a combination of requests
(GET, PUT, POINT, for example) without zeroing out the inapplicable subparameters each time you go
from one request to another.

RECLEN=abs expression
Specifies the length, in bytes, of a data record being stored. If the records you are storing are all the
same length, you do not need to change RECLEN after you set it. This parameter is required for PUT
requests. For GET requests, VSAM puts the length of the record retrieved in this field in the request
parameter list. It will be there if you update and store the record.

TIMEOUT=number
For VSAM RLS or DFSMStvs only, specifies the time in seconds that your program is to wait to obtain a
lock on a VSAM record when a lock on the record is already held by another program.

A nonzero value for TIMEOUT specifies the time (in seconds) this program waits for the other
program(s) to release the lock.

A value of zero specifies TIMEOUT processing is not to be performed by VSAM for this request. That is,
if the record lock required by the request is held by another program, the program waits until the
other program releases the lock regardless of how long that might be.

TRANSID=abs expression
Specifies a number that relates modified buffers in a buffer pool. Use in shared resource applications
and a description are in z/OS DFSMS Using Data Sets. This parameter has no effect for UNIX files.

For RLS or DFSMStvs, this parameter is ignored. LUWID replaces this function.

GENCB—RPL

Chapter 3. Customizing the DFSMStvs environment 143

WAREA=address
Specifies the address of an area in which the request parameter lists are generated.

If you did not specify an area in which the request parameter list is to be generated, VSAM obtains
virtual storage space for the area (as specified by the LOC=keyword). Subpool 0 will be requested
under the user's key and state. Users executing in key 0 and supervisor state will actually be assigned
subpool 252. VSAM returns the address of the area in which the request parameter lists are
generated in register 1, and the length of the area in register 0. You can find the length of each list by
dividing the length of the area by the number of copies. You can then calculate the address of each list
by using the length of each list as an offset.

If you are generating control blocks by issuing several GENCBs, specifying an area (WAREA and
LENGTH parameters) for them allows you to address all of them with one base register and to avoid
repetitive requests for virtual storage.

Building a chain of request parameter lists

When GENCB is used to build a chain of request parameter lists, the request parameter lists may be
chained using only GENCB macros or using GENCB and MODCB macros together. When only GENCB is
used, the request parameter lists are created in reverse order, as follows:

SECOND GENCB BLK=RPL
 LR 2,1
FIRST GENCB BLK=RPL,NXTRPL=(2)

SECOND GENCB creates the second request parameter list, which makes its address available for the first
request parameter list. The address of the request parameter list is returned in register 1 and is loaded
into register 2. FIRST GENCB creates the first request parameter list and supplies the address of the next
request parameter list using register notation. GENCB and MODCB macros may be used together to
create a chain of request parameter lists, as follows:

 GENCB BLK=RPL,COPIES=2
 LR 2,0
 SRL 2,1
 LR 3,1
 LA 4,0(2,3)
 MODCB RPL=(3),NXTRPL=(4)

The GENCB macro creates two request parameter lists. The length of the parameter lists is returned in
register 0 and loaded into register 2. The address of the area in which the lists were created (and,
therefore, the address of the first one) is returned in register 1 and loaded into register 3. The SRL
statement divides the total length of the area (register 2) by 2. The LA statement loads the address of the
second request parameter list into register 4. The MODCB macro modifies the first request parameter list
(register 3) by supplying the address of the second request parameter list (register 4) in the NXTRPL
parameter.

Each request parameter list in a chain should have the same OPTCD subparameters. Having different
subparameters may cause logical errors. You cannot chain request parameter lists for updating or
deleting records—only for retrieving records or storing new records. You cannot process records in the I/O
buffer with chained request parameter lists. (OPTCD=UPD and LOC are invalid for chained request
parameter lists.)

Example: GENCB macro (generate a request parameter list)

In this example, a GENCB macro is used to generate a request parameter list.

ACCESS GENCB BLK=RPL, x
 ACB=ACCESS, x
 AM=VSAM, x
 AREA=WORK, x
 AREALEN=125, x
 ARG=SEARCH, x
 LOC=ANY, x
 MSGAREA=MESSAGE, x
 MSGLEN=128, x
 OPTCD=(SKP,UPD)

GENCB—RPL

144 z/OS: z/OS DFSMStvs Administration Guide

ACCESS ACB MACRF=(SKP,OUT)
WORK DS CL125
SEARCH DS CL8
MESSAGE DS CL128

The GENCB macro’s parameters are:

• BLK specifies a request parameter list is generated.
• ACB specifies that the request parameter list is associated with a data set and processing options
identified by ACCESS.

• AREA and AREALEN specify a 125-byte work area used for processing records.
• ARG specifies the address of the search argument.
• LOC specifies that VSAM obtain storage for the request parameter list in an area above 16 megabytes.
• MSGAREA and MSGLEN specify a 128-byte area used for physical-error messages.
• OPTCD specifies the subparameters that govern the request defined by the request parameter list
identified by SKP and UPD.

Example: GENCB macro (generate a request parameter list)

In this example, a GENCB macro is used to generate a request parameter list (RPL). In this example the
user provides the storage to contain the RPL. Because the generate form of the macro is used, the GENCB
parameter list is built in a remote area and passed to VSAM for action.

 LA 10,LEN2 Get length of the GENCB parameter
 list returned by the GENCB macro.
 GETMAIN R,LV=(10) Get storage for the area in which
 the GENCB parameter list is to
 be built.
 LR 2,1 Save addr of GENCB parameter-list
 area.
GENCB1 GENCB BLK=RPL, One copy generated; VSAM builds x
 ACB=ACCESS, the RPL in the storage provided x
 AM=VSAM, at the location pointed to by x
 AREA=WORK, WAREA. x
 AREALEN=125, x
 ARG=SEARCH, x
 LENGTH=RPLLNGTH, x
 MSGAREA=MESSAGE, x
 MSGLEN=128, x
 OPTCD=(SKP,UPD), x
 WAREA=MYRPL, x
 MF=(G,(2),LEN2)
 .
 .
 .
ACCESS ACB MACRF=(SKP,OUT)
WORK DS CL125
SEARCH DS CL8
MESSAGE DS CL128
 DS 0F
MYRPL DS CL(RPLLNGTH) Storage in which the RPL is to be
 built.
ANYNAME DSECT Avoid generation in CSECT
RPLSTART RPL AM=VSAM
RPLEND DS 0F
RPLLNGTH EQU RPLEND-RPLSTART

The GENCB macro's parameters are:

• BLK specifies a request parameter list is generated.
• ACB specifies that the request parameter list is associated with a data set and processing options
identified by ACCESS.

• AREA and AREALEN specify a 125-byte work area used for processing records.
• ARG specifies the address of the search argument.
• LENGTH specifies that the length of the storage you provide for the RPL is the value of RPLLNGTH.
• MSGAREA and MSGLEN specify a 128-byte area used for physical-error messages.

GENCB—RPL

Chapter 3. Customizing the DFSMStvs environment 145

• OPTCD specifies the subparameters that govern the request defined by the request parameter list
identified by SKP and UPD.

• WAREA specifies that the storage you provide for the RPL begins at label MYRPL.
• MF specifies that the GENCB parameter list is to be built in the location specified by register 2. Also, the

expansion of the GENCB macro will equate LEN2 to the length of the GENCB parameter list.

GENCB—list form

The format of the list form of GENCB follows.

The format of the list form of GENCB.

Label Operand Parameters

[label] GENCB BLK={ACB|EXLST|RPL}
[,AM=VSAM]
[,COPIES=abs expression]
[,keyword={address|name|abs expression|option},...]
[,LENGTH=abs expression]
[,LOC={BELOW|ANY}]
[,RMODE31={ALL|BUFF|CB|NONE}]
,MF={L|(L,address[,label])}
[,WAREA=address]

GENCB—execute form

The format of the execute form of GENCB follows.

The format of the execute form of GENCB.

Label Operand Parameters

[label] GENCB BLK={ACB|EXLST|RPL}
[,AM=VSAM]
[,COPIES=abs expression]
[,keyword={address|name|abs expression|option},...]
[,LENGTH=abs expression]
[,LOC={BELOW|ANY}]
[,RMODE31={ALL|BUFF|CB|NONE}]
,MF=(E,address)
[,WAREA=address]

GENCB—generate form

The format of the generate form of GENCB follows.

The format of the generate form of GENCB.

Label Operand Parameters

[label] GENCB BLK={ACB|EXLST|RPL}
[,AM=VSAM]
[,COPIES=abs expression]
[,keyword=address|name|abs expression|option},...]
[,LENGTH=abs expression]
[,LOC={BELOW|ANY}]
[,RMODE31={ALL|BUFF|CB|NONE}]
,MF=(G,address[,label])
[,WAREA=address]

GENCB—RPL

146 z/OS: z/OS DFSMStvs Administration Guide

IDALKADD—RLS record locking
The IDALKADD macro is a VSAM RLS and DFSMStvs request macro. Applications or application support
packages that perform logging of changes to VSAM data sets, such as CICS file control, use the IDALKADD
macro. With logging, it is necessary to create a log entry before making the corresponding change to the
data set or database. The log entry must uniquely identify the inserted, deleted, or changed record. When
VSAM rejects an ADD due to a duplicate-key condition, logging an ADD to a KSDS presents a problem.
Also, the record identification for an ESDS is the record RBA, and logging an ADD to an ESDS implies that
the RBA of the record is known before VSAM actually adds the record. An IDALKADD request addresses
these two situations.

Before IDALKADD adds a record to a KSDS, RRDS, or VRRDS, via the base or a path, the macro performs
duplicate key or RRN checking. If a record with the specified key or RRN already exists in the base, the
IDALKADD macro fails with the duplicate key or RRN error status. If the base data set does not contain a
record with the specified key or RRN, IDALKADD obtains a record lock to ensure that no other LUWID
application can add a record with this key or RRN. For an IDALKADD SEQ request to add a record to an
RRDS sequentially, VSAM assigns and returns the RRN. An IDALKADD request to add a record to an ESDS
returns the RBA that will be assigned to the new record, locks the record RBA, and ensures no other
LUWID application can add a record that will be assigned that RBA to the ESDS. Upon successful
completion of this request, the requestor writes an entry in a recovery log/journal and issues a VSAM PUT
RPL OPTCD=(NUP) to add the record to the data set.

The PUT request must use the same RPL as was used by the IDALKADD. The IDALKADD and PUT NUP are
a request pair in the same sense as GET UPD and PUT UPD are a request pair. Reuse of the RPL before
issuing the PUT NUP cancels the IDALKADD. The length of the record specified on IDALKADD and the
subsequent PUT must be the same or the PUT request is rejected with an invalid record length reason
code. For a KSDS, RRDS, or VRRDS, the PUT must specify a record with the same base key/RRN as was
specified by the IDALKADD request. A commit protocol application must specify the same LUWID in the
PUT request as was specified in the paired IDALKADD request.

Even though an IDALKADD is successful, the corresponding PUT NUP may fail. An example of where the
PUT NUP would fail is the condition where the PUT NUP would create a duplicate key in an alternate index
and the alternate index requires unique keys. In this case, the PUT NUP fails.

IDALKADD is supported for both base and path access. IDALKADD is supported for both recoverable
spheres and non-recoverable spheres. It is supported for KSDSs, ESDSs, RRDSs, and VRRDSs.

The record lock acquired by an IDALKADD request is released as follows:

• Recoverable Sphere

CICS transactions and batch jobs that use DFSMStvs are allowed to add records to a recoverable
sphere. An NSR batch job can add records to a recoverable sphere when the data set is not open for
VSAM RLS or DFSMStvs access (for example, it has been quiesced for VSAM RLS and DFSMStvs access).
The record lock is released at the end of the transaction.

• Non-Recoverable Sphere

The following events release the record lock.

– The paired PUT NUP is issued and the data CI containing the new record has been written to DASD
and the coupling facility.

– An ENDREQ is issued on the string.
– The string (RPL) is re-used without issuing the paired PUT NUP.
– The CICS transaction reaches end-of-transaction.

The keep lock option (KL/NOKL) supported by RLS and DFSMStvs for GET UPD does not apply and is
ignored by an IDALKADD request.

VSAM does not support PUT NUP,SEQ in backward processing mode. This also means IDALKADD
SEQ,BWD is not supported.

The format of the IDALKADD macro follows.

GENCB—RPL

Chapter 3. Customizing the DFSMStvs environment 147

The format of the IDALKADD macro.

Label Operand Parameters

[label] IDALKADD RPL=address

label
specifies 1 to 8 characters that provide a symbolic address for the IDALKADD macro.

RPL=address
specifies the address of the request parameter list that defines this IDALKADD request. You may
specify the address in register notation (using a register from 1 through 12, enclosed in parentheses)
or specify it with an expression that generates a valid relocatable A-type address constant.

The following RPL parameters apply to this request:
AREA

Contains a copy of the record that will be added to the data set by a PUT NUP request

When you issue IDALKADD to add a record to a KSDS, a record lock is obtained on the specified
record. The record lock name is derived from the base key of the record. The base key is extracted
from this copy of the record.

AREALEN
Length of the record. The subsequent PUT must specify the same length.

ARG
For an IDALKADD DIR/SKP to a RRDS or an IDALKADD DIR/SKP/SEQ request to a VRRDS, the
application provides the RRN of the new record here.

LUWID
LUWID identifies the logical unit of work ID associated with a request to VSAM.

A commit protocol application (for example, CICS) must specify a nonzero value for this parameter.
Noncommit protocol applications (for example, batch jobs that are not using DFSMStvs access) and
batch applications that are using DFSMStvs access do not specify the LUWID parameter. When RLS
access is used, VSAM assigns a single LUWID for all requests issued by a noncommit protocol
application. When DFSMStvs access is used, DFSMStvs fills in the LUWID value using the unit of
recovery ID obtained from resource recovery services (RRS).

For an ESDS, the IDALKADD request returns the RBA that will be assigned to the record by the
subsequent PUT NUP request. The RBA value is returned in field RPLDDDD of the RPL for a non-
extended-addressable data set, and in the lower six bytes of the field RPLRBAR for an extended-
addressable data set.

For an IDALKADD SEQ to a RRDS, the RPL/string must be positioned to an empty slot. VSAM assigns
the RRN of the empty slot to the new record and returns the RRN value in the area pointed to by the
RPL ARG parameter.

CICS uses the LUWID parameter to pass a CICS transaction identifier to VSAM RLS. LUWID must not
be specified by other (non-CICS) programs.

MODCB—modify an access method control block

The format of the MODCB macro used to modify an access method control block follows.

MODCB—ACB

148 z/OS: z/OS DFSMStvs Administration Guide

The format of the MODCB macro used to modify an access method control block.

Label Operand Parameters

[label] MODCB ACB=address
[BSTRNO=abs expression]
[,BUFND=abs expression]
[,BUFNI=abs expression]
[,BUFSP=abs expression]
[,DDNAME=character string]
[,EXLST=address]
[,MACRF=([ADR][,CNV] [,KEY]
 [,CFX|NFX]
 [,DDN|DSN]
 [,DFR|NDF]
 [,DIR][,SEQ][,SKP]
 [,ICI|NCI]
 [,IN][,OUT]
 [,NIS|SIS]
 [,NRM|AIX]
 [,NRS|RST]
 [,NSR|LSR|GSR]
 [,NUB|UBF])]
[,MAREA=address]
[,MLEN=abs expression]
[,PASSWD=address]
[,RMODE31={ALL|BUFF|CB|NONE}]
[,SHRPOOL=abs expression]
[,STRNO=abs expression]

The subparameters of the MODCB macro can be expressed as absolute numeric expressions, as
character strings, as codes, as expressions that generate valid relocatable A-type address constants, in
register notation, as S-type address constants, and as indirect S-type address constants. “Subparameters
with GENCB, MODCB, SHOWCB, and TESTCB” on page 117, further defines these operand expressions.
label

specifies 1 to 8 characters that provide a symbolic address for the MODCB macro.
ACB=address

specifies the address of the access method control block to be modified. The data set identified by the
access method control block must not be opened. A request to modify the access method control
block of an open data set will fail.

Important: The remaining parameters represent parameters of the ACB macro that can be modified. The
value specified replaces the value, if any, presently in the access method control block. There are no
defaults. For an explanation of these parameters, see “ACB—generate an access method control block at
assembly time” on page 121.

If MODCB is used to modify a MACRF subparameter, other subparameters are unaffected, except when
they are mutually exclusive. For example, if you specify MACRF=ADR in the MODCB and MACRF=KEY is
already indicated in the control block, both ADR and KEY are now indicated. But, if you specify
MACRF=UBF in the MODCB and NUB is indicated, only UBF will now be indicated.

The RMODE31 parameter tells the VSAM OPEN routines where to obtain storage for the control blocks
and I/O buffers. Therefore, the only time the values specified by the RMODE31 parameter have any effect
on VSAM is on the setting just before an OPEN is issued. At other times, changing these values has no
effect on the residency of the control blocks and I/O buffers. RMODE31 is ignored for RLS processing.

If MODCB RPL is used to change the address of an ACB, you must first issue an ENDREQ macro.

Restriction: If you issue a MODCB for a non-VSAM and non-VTAM ACB, the results will be unpredictable.

MODCB—ACB

Chapter 3. Customizing the DFSMStvs environment 149

Example: MODCB macro (modify an access method control block)

In this example, a MODCB macro is used to modify the name of the exit list in an access method control
block.

 MODCB ACB=BLOCK, BLOCK was generated at x
 EXLST=EGRESS assembly.

MODCB—modify an exit list

The format of the MODCB macro used to modify an exit list follows.

The format of the MODCB macro used to modify an exit list.

Label Operand Parameters

[label] MODCB EXLST=address
[,EODAD=([address][,A|N][,L])]
[,JRNAD=([address][,A|N][,L])]:
[,LERAD=([address][,A|N][,L])]
[,SYNAD=([address][,A|N][,L])]

The subparameters of the MODCB macro can be expressed as absolute numeric expressions, as
character strings, as codes, as expressions that generate valid relocatable A-type address constants, in
register notation, as S-type address constants, and as indirect S-type address constants. “Subparameters
with GENCB, MODCB, SHOWCB, and TESTCB” on page 117, further defines these operand expressions.

For information about what determines the addressing mode and the parameter list residency mode set
when the exit routine gets control, see z/OS DFSMS Using Data Sets.

label
specifies 1 to 8 characters that provide a symbolic address for the MODCB macro.

EXLST=address
specifies the address of the exit list to be modified. You can modify an exit list at any time—that is,
before or after opening the data sets for which the list indicates exit routines. You cannot, however,
add an entry to the exit list if it changes the exit list's length; the exit list must already be large enough
to contain the new exit address. The order in which addresses are stored in the EXLST control block is:
EODAD, SYNAD, LERAD, JRNAD, and UPAD. For example, if you generate an exit list with only the
LERAD exit, you can add entries for EODAD and SYNAD later. However, you cannot add the JRNAD
exit address, because doing so would increase the size of the EXLST control block. The MODCB macro
does not support the UPAD user exit.

The remaining parameters represent parameters of the EXLST macro that can be modified or added to an
exit list. For an explanation of these parameters, see “EXLST—generate an exit list at assembly time” on
page 129.

Requirement: If the JRNAD exit is changed for an OPEN ACB, then the ACB must be closed and reopened
to use the modified JRNAD exit.

For more information about user exit routines, see z/OS DFSMS Using Data Sets.

Example: MODCB macro (modify an exit list)

In this example, a MODCB macro is used to activate an exit in an exit list.

 MODCB EXLST=(*, Indirect notation is used to specify x
 EXLSTADR), the address of the exit list generated x
 . EODAD=(EOD,L,A) at execution.
 .
EOD DC C'ENDUP'
EXLSTADR DS F When the exit list was generated, x
 its address was saved here.

The MODCB macro's parameters are:

MODCB—EXLST

150 z/OS: z/OS DFSMStvs Administration Guide

• EXLST specifies the address of the exit list being modified is located at EXLSTADR.
• EODAD specifies the entry for the end-of-data routine is marked active in the exit list that has an

address at EXLSTADR. The name of the end-of-data routine (ENDUP) is at EOD.

MODCB—modify a request parameter list

The format of a MODCB macro used to modify a request parameter list follows.

The format of a MODCB macro used to modify a request parameter list.

Label Operand Parameters

[label] MODCB RPL=address
[,ACB=address]
[,AREA=address]
[,AREALEN=abs expression]
[,ARG=address]
[,ECB=address]
[,KEYLEN=abs expression]
[,MSGAREA=address]
[,MSGLEN=abs expression]
[,NXTRPL=address]
[,OPTCD=([ADR|CNV|KEY]
 [,DIR|SEQ|SKP]
 [,ARD|LRD]
 [,FWD|BWD]
 [,ASY|SYN]
 [,NSP|NUP|UPD]
 [,KEQ|KGE]
 [,FKS|GEN]
 [,LOC|MVE]]
 [,RBA|XRBA])]
[,RECLEN=abs expression]
[,TRANSID=abs expression]

The subparameters of the MODCB macro can be expressed as absolute numeric expressions, as
character strings, as codes, as expressions that generate valid relocatable A-type address constants, in
register notation, as S-type address constants, and as indirect S-type address constants. “Subparameters
with GENCB, MODCB, SHOWCB, and TESTCB” on page 117, further defines these operand expressions.
label

specifies 1 to 8 characters that provide a symbolic address for the MODCB macro.
RPL=address

specifies the address of the request parameter list being modified. You may not modify an active
request parameter list; one that defines a request that has been issued but not completed. To modify
such a request parameter list, you must first issue a CHECK or an ENDREQ macro.

Important: The remaining parameters represent parameters of the RPL macro that can be modified. The
value specified replaces the value, if any, presently in the request parameter list. There are no defaults.
For an explanation of these parameters, see “GENCB—generate a request parameter list at execution
time” on page 140.

If MODCB is used to modify an OPTCD subparameter within a group of subparameters, the current
subparameter for that group is changed because only one subparameter in a group is effective at a time.
Only the specified OPTCD subparameter is changed.

Example: MODCB macro (modify a request parameter list)

In this example, a MODCB macro is used to modify the record length field in a request parameter list.

MODCB—RPL

Chapter 3. Customizing the DFSMStvs environment 151

This example shows the one exception to GENCB, MODCB, SHOWCB, and TESTCB building a parameter
list and passing it to the control block manipulation module in register 1. The RPL address (in register 2) is
loaded into register 1 and the RECLEN value (in register 3) is loaded into register 0. These registers are
passed to the control block manipulation macro. This occurs when the LIST, EXECUTE, or GENERATE
form of the MODCB macro is not used and the only parameter specified other than RPL, is RECLEN.

 L 3,length Load the new record length.

 MODCB RPL=(2), Register 2 contains the address x
 of the request parameter list. x
 RECLEN=(3) Register 3 contains the record length.

The MODCB macro's parameters are:

• RPL specifies register 2 contains the address of the request parameter list being modified.
• RECLEN specifies the record length field is being modified. The contents of register 3 replace the

current value in the RECLEN field.

MODCB—list form

The format of the list form of MODCB follows.

The format of the list form of MODCB.

Label Operand Parameters

[label] MODCB {ACB|EXLST|RPL}=address
,keyword={address|name|abs expression|option},...
,MF={L|(L,address[,label])}

MODCB—execute form

The format of the execute form of MODCB is:

The format of the execute form of MODCB.

Label Operand Parameters

[label] MODCB [{ACB|EXLST|RPL}=address]
,keyword={address|name|abs expression|option},...
,MF=(E,address)

Requirement: If the execute form of MODCB is used and EXLST is used as a keyword to be processed, the
block must be identified by ACB=.

MODCB—generate form

The format of the generate form of MODCB follows.

The format of the generate form of MODCB.

Label Operand Parameters

[label] MODCB {ACB|EXLST|RPL}=address
,keyword={address|name|abs expression|option},...
,MF=(G,address[,label])

RPL—generate a request parameter list at assembly time
Use the RPL macro to generate a request parameter list. Values for RPL macro subparameters can be
specified as absolute numeric expressions, character strings, codes, and expressions that generate valid
relocatable A-type address constants.

MODCB—RPL

152 z/OS: z/OS DFSMStvs Administration Guide

RPL macro syntax

The format of the RPL macro follows.

The format of the RPL macro.

Label Operand Parameters

[label] RPL [ACB=address]
[,AM=VSAM]
[,AREA=address]
[,AREALEN=abs expression]
[,ARG=address]
[,ECB=address]
[,KEYLEN=abs expression]
[,LUWID=luwid]
[,TIMEOUT=number]
[,MSGAREA=address]
[,MSGLEN=abs expression]
[,NXTRPL=address]
[,OPTCD=([ADR|CNV |KEY]
 ;[,DIR|SEQ|SKP]
 ;[,ARD|LRD]
 ;[,FWD|BWD]
 ;[,ASY|SYN]
 ;[,NSP|NUP|UPD]
 ;[,KEQ|KGE]
 ;[,FKS|GEN]
 ;[,NWAITX|WAITX]
 ;[,LOC|MVE]
 ;[,NRI|CR|CRE]
 ;[,RBA|XRBA])]
 ;[,NRI|CR|CRE] ;[,
NOKL|KL]
[,RECLEN=abs expression]
[,TRANSID=abs expression]

label
specifies 1 to 8 characters that provide a symbolic address for the generated request parameter list.
You can use label in the request macros to give the address of the list. You can use label in the
NXTRPL parameter of the RPL macro, when you are chaining request parameter lists, to indicate the
next list.

ACB=address
specifies the address of the access method control block identifying the data set to which access is
requested. If you used the ACB macro to generate the control block, you can specify the label of that
macro for the address. If the ACB parameter is not coded, you must specify the address before
issuing the request.

AM=VSAM
specifies the access method using the control block is VSAM.

AREA=address
specifies the address of a work area to and from which VSAM moves a data record if you request it to
do so (with the RPL parameter OPTCD=MVE). If your request is to process records in the I/O buffer
(OPTCD=LOC), VSAM puts into this work area the address of a data record within the I/O buffer.

AREALEN=abs expression
specifies the length, in bytes, of the work area whose address is specified by the AREA parameter. Its
minimum for OPTCD=MVE is the size of a data record (of the largest data record, for a data set with
records of variable length). For OPTCD=LOC, the area should be 4 bytes to contain the address of a
data record within the I/O buffer.

RPL macro syntax

Chapter 3. Customizing the DFSMStvs environment 153

ARG=address
specifies the address of a field that contains the search argument for direct retrieval, skip-sequential
retrieval, and positioning. For a RRDS, the ARG field must be 4 bytes long. For direct or skip-
sequential processing, this field contains your search argument, a relative record number. For
sequential processing (OPTCD=(KEY,SEQ)), the 4 bytes are required for VSAM to return the feedback
RRN. For keyed access (OPTCD=KEY), the search argument is a full or generic key or relative record
number. For addressed access (OPTCD=ADR), the search argument is an RBA. If you specify a generic
key (OPTCD=GEN), you must also specify in the KEYLEN parameter how many of the bytes of the full
key you are using for the generic key. ARG is also used with WRTBFR and MRKBFR. Using WRTBFR
and MRKBFR to share resources is described in z/OS DFSMS Using Data Sets.

ECB=address
specifies the address of an event control block (ECB) that you can supply. VSAM indicates in the ECB
whether a request is complete or not (using standard completion codes, which are described in z/OS
MVS System Codes). You can use the ECB to determine that an asynchronous request is complete
before issuing a CHECK macro. (If you issue a CHECK before a request is complete, you give up
control and must wait for completion.) The ECB parameter is always optional.

KEYLEN=abs expression
specifies the length, in bytes, of the generic key (OPTCD=GEN) you are using for a search argument
(given in the field addressed by the ARG parameter). This parameter is specified as a number from 1
through 255. It is required when the search argument is a generic key. For full-key searches, VSAM
knows the key length, which is taken from the catalog definition of the data set when you open the
data set. This parameter is ignored for UNIX files.

LUWID=luwid
For MACRF=RLS only, LUWID identifies the logical unit of work associated with a request to VSAM.

A commit protocol application (for example, CICS) must specify a nonzero value for this parameter.
Noncommit protocol applications (for example, batch jobs that are not using DFSMStvs access) and
batch applications that are using DFSMStvs access do not specify the LUWID parameter. When
DFSMStvs access is used, DFSMStvs fills in the LUWID using the URID obtained from RRS.

The LUWID together with the SUBSYSNM (specified when the ACB is opened) form the ownership for
record locks. For RLS GET NUP, GET UPD, and POINT only, a commit protocol application must specify
a nonzero value for this parameter. A noncommit protocol application does not specify the LUWID
parameter. VSAM assigns a single LUWID for all requests issued by a non-commit protocol
application.

For RLS PUT UPD/ERASE only, a commit protocol application must specify the same nonzero value in
both the preceding GET UPD request and this PUT UPD/ERASE request. A noncommit protocol
application does not specify the LUWID parameter. VSAM assigns a single LUWID for all requests
issued by a noncommit protocol application.

For RLS PUT NUPD only, a commit protocol application must specify a nonzero value for this
parameter. When the IDALKADD protocol is used, both the preceding IDALKADD request and this PUT
NUP request must specify the same LUWID value. A noncommit protocol application does not specify
the LUWID parameter. VSAM assigns a single LUWID for all requests issued by a noncommit protocol
application.

CICS uses the LUWID parameter to pass a CICS transaction identifier to VSAM RLS. LUWID must not
be specified by other (non-CICS) programs.

MSGAREA=address
specifies the address of an area you might, optionally, supply for VSAM to send you a message in case
of a physical error. The format of a physical error message is given in “Reason code (physical errors)”
on page 189.

MSGLEN=abs expression
specifies the size, in bytes, of the message area indicated in the MSGAREA parameter. If MSGAREA is
specified, MSGLEN is required. The minimum size of a message is 128 bytes. If you provide less than
128 bytes, no message is returned to your program.

RPL macro syntax

154 z/OS: z/OS DFSMStvs Administration Guide

NXTRPL=address
specifies the address of the next request parameter list in a chain. Omit this parameter from the
macro that generates the last list in the chain. When you issue a request defined by a chain of request
parameter lists, indicate in the request macro the address of the first parameter list in the chain. This
parameter is not supported for UNIX files and if it is specified with a non-zero value, results in an error
on a subsequent GET, PUT, or POINT request.

OPTCD=([ADR|CNV|KEY]
 [,DIR|SEQ|SKP]
 [,ARD|LRD]
 [,FWD|BWD]
 [,ASY|SYN]
 [,NSP|NUP|UPD]
 [,KEQ|KGE]
 [,FKS|GEN]
 [,NWAITX|WAITX]
 [,LOC|MVE]
 [,CR|CRE|NRI]
 [,RBA|XRBA])

specifies the subparameters governing the request defined by the request parameter list. Each group
of subparameters has a default; subparameters are shown in Table 20 on page 155 with defaults
underlined. Only one subparameter from each group can be specified. Some requests do not require a
subparameter from all of the groups to be specified. The groups that are not required are ignored.
Thus, you can use the same request parameter list for a combination of requests (GET, PUT, POINT,
for example) without zeroing out the inapplicable subparameters each time you go from one request
to another.

TIMEOUT=number
For RLS and DFSMStvs, specifies the time, in seconds, that your program is willing to wait to obtain a
lock on a VSAM record when a lock on the record is already held by another program. A nonzero value
for TIMEOUT specifies the time (in seconds) this program will wait for the other program(s) to release
the lock.

A value of zero specifies that TIMEOUT processing is not to be performed by VSAM for this request.
That is, if the record lock required by the request is held by another program, the program waits until
the other program releases the lock regardless of how long that might be.

Any value that you specify for this parameter overrides a value that was specified using RLSTMOUT in
the JCL.

This parameter is ignored for UNIX files.

Table 20. OPTCD options. OPTCD options

Option Meaning

ADR Addressed access to a key-sequenced or an entry-sequenced data set: RBAs are used as
search arguments, and sequential access is done by entry sequence.

VSAM RLS and DFSMStvs do not support addressed access to a KSDS.

CNV Control interval access. Control interval access is not allowed for compressed data sets.

VSAM RLS and DFSMStvs do not support CNV access. This parameter is ignored for UNIX
files and if it is specified, results in an error on a subsequent GET, PUT, or POINT
request.

KEY Keyed access to an RRDS or KSDS. Keys or relative record numbers are used as search
arguments and sequential access is done by key or relative record number sequence.

DIR Direct access to a RRDS, KSDS, or ESDS.

SEQ Sequential access to a RRDS, KSDS, or ESDS.

SKP Skip sequential access.

RPL macro syntax

Chapter 3. Customizing the DFSMStvs environment 155

Table 20. OPTCD options. OPTCD options (continued)

Option Meaning

ARD User's argument determines the record to be located, retrieved, or stored.

LRD Last record in the data set is to be located (POINT) or retrieved (GET direct); requires
OPTCD=BWD.

FWD Processing to proceed in a forward direction.

BWD Processing to proceed in a backward direction; for keyed (KEY) or addressed (ADR)
sequential (SEQ) or direct (DIR) requests; valid for POINT, GET, PUT, and ERASE
operations; establish positioning by a POINT with OPTCD=BWD or by a GET direct with
OPTCD=(NSP,BWD). When OPTCD=BWD is specified, the subparameters KGE and GEN
are ignored and the subparameters KEQ and FKS are assumed. This parameter is
ignored for UNIX files and if it is specified, results in an error on a subsequent GET, PUT,
or POINT request.

ASY Asynchronous access; VSAM returns to the processing program after scheduling a
request so the program can do other processing while the request is being carried out.

SYN Synchronous access; VSAM returns to the processing program after completing a
request.

NSP With OPTCD=DIR only, VSAM is to remember its position (for subsequent sequential
access); that is, the position is not to be forgotten unless an ENDREQ macro is issued.

NUP A data record being retrieved will not be updated or deleted; a record being stored is a
new record; VSAM does not remember its position for direct requests into a work area.

UPD A data record being retrieved can be updated or deleted; a record being stored or
deleted was previously retrieved with OPTCD=UPD; VSAM remembers its position for
sequential and direct GET requests. When PUT, ERASE or ENDREQ is issued after a DIR
UPD GET request, VSAM releases exclusive control. This parameter is not supported for
UNIX files and if it is specified, results in an error on a subsequent GET, PUT, or POINT
request.

KEQ For GET with OPTCD=(KEY,DIR) or (KEY,SKP) and for POINT with OPTCD=KEY, the key
(full or generic) that you provide for a search argument must equal the key or relative
record number of a record. For a RRDS, KEQ is assumed except for POINT.

KGE For the same cases as KEQ, if the key (full or generic) that you provide for a search
argument does not equal that of a record, the request applies to the record that has the
next higher key. If using POINT with a RRDS, KGE positions to the specified relative
record number whether the slot is empty or not. If the relative record number is greater
than the highest existing record, EOD is returned. A subsequent PUT will insert the
record at this position.

FKS A full key is provided as a search argument.

GEN A generic key is provided as a search argument; give the length in the KEYLEN
parameter. Generic keys are not supported for a variable-length RRDS.

NWAITX Never take the UPAD or RLSWAIT exit.

WAITX If OPTCD=SYN and the ACB's MACRF=LSR GSR and UPAD exit routing is specified, VSAM
takes the UPAD exit at points when VSAM would normally issue a WAIT.

For VSAM RLS and DFSMStvs, take the RLSWAIT exit, which is active for this request.

LOC For retrieval, VSAM leaves the data record in the I/O buffer for processing, unless the
data set is compressed, in which case VSAM moves the record to a work area; not valid
for PUT or ERASE; valid for GET with OPTCD=UPD. However, to update the record, you
must build a new version of the record in a work area and modify the request parameter
list OPTCD from LOC to MVE before issuing a PUT. For keyed-sequential retrieval,
modifying key fields in the I/O buffer might cause incorrect results for subsequent GET
requests until the I/O record is reread.Not valid for requests with spanned records. For
UNIX files, LOC mode is supported but requires extra overhead to get storage in the user
space and move the record.

RPL macro syntax

156 z/OS: z/OS DFSMStvs Administration Guide

Table 20. OPTCD options. OPTCD options (continued)

Option Meaning

MVE For retrieval, VSAM moves the data record to a work area for processing, and for storage,
VSAM moves it from the work area to the I/O buffer.

UPD,KL For VSAM RLS and DFSMStvs only, UPD,KL specifies a GET for update to a recoverable
sphere. UPD,KL specifies that the lock obtained as part of GET UPD processing is to be
explicitly held until a request is issued by the commit protocol application (for example,
CICS) to release all record locks held by the LUWID. The lock is held even if the RPL is
reused or ENDREQ issued prior to the corresponding PUT UPD or ERASE. Also, the status
of the lock is such that it might become a retained lock. UPD,KL is ignored for a non-
recoverable sphere.

UPD,NOKL For RLS only, UPD,NOKL specifies a GET for update to a recoverable sphere. UPD,NOKL
specifies that the lock obtained as part of GET UPD processing is to be released if the
RPL is reused or ENDREQ issued prior to the corresponding PUT UPD or ERASE. Also, the
status of the lock is such that it will not become a retained lock.

UPD,NOKL is the default.

CR For RLS and DFSMStvs POINT and GET NUP interfaces, CR (consistent read integrity)
specifies that a shared lock is to be obtained and released as part of GET processing. CR
specifies that the application wants this request to be serialized with update/erase of
this record by other LUWIDs and by other RPLs used by this LUWID. applications or
transactions. RLS obtains a shared lock on the record.

For RLS and DFSMStvs POINT, the shared lock remains held on successful completion of
the POINT CR request.

For RLS and DFSMStvs GET, after a copy of the record is moved to the area pointed to by
the RPL AREA parameter, the shared lock is released.

If neither NRI nor CR is specified, the NRI/CR option is determined in the following
order:

1. RLSREAD specification in the ACB, if any
2. RLS JCL specification, if any
3. NRI is assumed.

If there are multiple specifications in the RPL, CR takes precedence over NRI.

RPL macro syntax

Chapter 3. Customizing the DFSMStvs environment 157

Table 20. OPTCD options. OPTCD options (continued)

Option Meaning

CRE For RLS and DFSMStvs POINT and GET NUP interfaces, CRE (consistent read explicit)
specifies that a shared lock is to be obtained. This lock is released by RLS or DFSMStvs
upon completion of this transaction. This provides a repeatable read function for CICS
transactions or DFSMStvs URs.

CRE specifies that the application wants this request to be serialized with update/erase
of this record by other LUWIDs/URs and by other RPLs used by this LUWID/UR. RLS
obtains a shared lock on the record. The shared lock remains held on successful
completion of the POINT CRE or GET CRE request. It will be released if positioning to the
record is lost and the record is not updated.

If the record requested by the POINT CR/CRE request does NOT exist, the request fails
with "record not found" error status (same as for VSAM NSR/LSR access). Because the
record does not exist, the CR/CRE request does not obtain a shared lock on the specified
record ID.

CRE is valid only when used by CICS in RLS mode or for data sets accessed in DFSMStvs
mode.

RLS obtains a shared lock on the record. After a copy of the record is moved to the area
to which the RPL AREA parameter points, the status of the shared lock is changed to
permit update/erase of the record by this LUWID/UR using this or another RPL. However,
the lock remains held, inhibiting (delaying) update/erase of this record by another
LUWID/UR until this LUWID/UR reaches the end of the transaction.

If NRI, CR, or CRE is not specified, integrity is assumed in the following order:

• RLSREAD specification on the ACB, if any,
• RLS JCL specification, if any,
• NRI is assumed.

If there are multiple specifications in the RPL, CRE takes precedence over CR, which
takes precedence over NRI.

NRI For RLS and DFSMStvs POINT and GET NUP interfaces, NRI (no read integrity) specifies
no locking on a GET (nonupdate). Because a lock is not obtained on the record, another
application or transaction might currently hold an exclusive lock on the record. For a
recoverable sphere, the returned record might be an uncommitted change that might be
later backed out (this form of processing is sometimes referred to as "dirty read"). The
opposite form of read processing is provided by the CR option where if another
application/transaction holds an exclusive lock on the record, the reader waits for
release of the exclusive lock and thus does NOT read an uncommitted change.

If neither NRI or CR is specified, the NRI/CR option is determined in the following order:

• RLSREAD specification on the ACB, if any,
• RLS JCL specification, if any,
• NRI is assumed.

If there are multiple specifications in the RPL, CR takes precedence over NRI.

Inserting or updating a base cluster record can result in a concurrent NRI read of the
record by an alternate index path, causing you to receive a false error (return code 8,
reason code 144 in Table 32 on page 179). RLS obtains a record lock and retries the
request to be sure this is not a false condition.

RBA For addressed accessing (OPTCD=ADR), the ARG field contains the address of a 4-byte
RBA. RBA is the default. Extended addressing is not to be used for this request.

RPL macro syntax

158 z/OS: z/OS DFSMStvs Administration Guide

Table 20. OPTCD options. OPTCD options (continued)

Option Meaning

XRBA For addressed accessing (OPTCD=ADR), the ARG field contains the address of an 8-byte
RBA search argument.

While you can specify RBA while using XRBA, the following considerations apply to
accessing by RBA values:

• For a GET extended addressing request, you must specify an OPTCD that includes DIR,
ADR, and XRBA.

• For a POINT extended addressingrequest, you must specify an OPTCD that includes
ADR and XRBA.

• For a MRKBFR extended addressingrequest, you must specify an OPTCD which
includes XRBA. The ARG field has the address of a 16 byte field containing the
beginning and ending 8 byte RBAs of the range.

• For a SCHBFR extended addressingrequest, you must specify an OPTCD which
includes XRBA. The ARG field has the address of a 16 byte field containing the
beginning and ending 8 byte RBAs of the range.

• For a WRTBFR TYPE=DRBA extended addressingrequest, you must specify an OPTCD
which includes XRBA. The ARG field has the address of an 8 byte field containing the 8
byte RBA to be located and written.

If the data being referenced by RBA for an extended addressing KSDS is less than 4GB,
you do not have to code this parameter. For data with RBA greater than 4GB the RPL
must specify extended addressing (XRBA) and an 8-byte RBA is required. Also, to
retrieve an 8-byte RBA using SHOWCB for the RPL, XRBA must be used instead.

XRBA specification can be used for any data set (whether or not it is extended
addressable).

RECLEN=abs expression
specifies the length, in bytes, of a data record being stored. This parameter is required for a PUT
request.

For GET requests, VSAM puts the length of the record retrieved in this field in the request parameter
list. It will be there if you update and store the record.

TRANSID=abs expression
specifies a number that relates modified buffers in a buffer pool. Used in shared resource applications
and described in z/OS DFSMS Using Data Sets. This parameter is ignored for UNIX files.

For RLS, this parameter is ignored. LUWID replaces this function.

Example: RPL macro

In this example, an RPL macro is used to generate a request parameter list named PARMLIST.

ACCESS ACB MACRF=(SKP,OUT), x
 DDNAME=PAYROLL

PARMLIST RPL ACB=ACCESS, x
 AM=VSAM, x
 AREA=WORK, x
 AREALEN=125, x
 ARG=SEARCH, x
 MSGAREA=MESSAGE, x
 MSGLEN=128, x
 OPTCD=(SKP,UPD) Most OPTCD defaults are appropriate x
 to assumptions.

WORK DS CL125
SEARCH DS CL8
MESSAGE DS CL128

RPL macro syntax

Chapter 3. Customizing the DFSMStvs environment 159

The ACB macro named ACCESS, specifies skip-sequential retrieval for update. Further details might be
provided on a DD statement named PAYROLL.

The RPL macro's parameters are:

• ACB associates the request parameter list with the access method control block generated by ACCESS.
• AREA and AREALEN specify a work area, WORK, that is 125 bytes long.
• ARG specifies the search argument is defined at SEARCH. The search argument is 8 bytes long.
• MSGAREA and MSGLEN specify a message area, MESSAGE, that is 128 bytes long. The message area is

provided for physical error messages.
• OPTCD specifies skip-sequential processing and specifies that a retrieved record can be updated or

deleted.
• NSR is assumed.

Because KEYLEN is not coded, a full-key search is assumed.

SCHBFR—search buffer
If you are using local or global shared resources, you can use the SCHBFR macro to search a buffer.

The format of the SCHBFR macro follows.

The format of the SCHBFR macro.

Label Operand Parameters

[label] SCHBFR [BFRNO=abs expression]
,RPL=address

label
specifies 1 to 8 characters that provide a symbolic address for the SCHBFR macro.

BFRNO=abs expression
specifies the number of the buffer VSAM is to search first. The buffers preceding it in the buffer pool
are not searched. The default is 1; that is, the first buffer is searched first. (If the number is coded in
register notation, all registers except 1 and 13 may be used.)

The meaning of BFRNO depends on the total number of buffers in the buffer pool and the number of
control intervals in the RBA range given by the RPL ARG parameter. This number is the buffer number
relative to the beginning of the RBA range if the total number of buffers in the buffer pool is greater
than (3/4 x number of CIs in the RBA range)+3. Otherwise, it is the buffer number on the physical
buffer chain.

Restriction: When a data set is in a compressed format, records might be compressed and each
buffer might contain an unpredictable amount of data.

RPL=address
specifies the address of the request parameter list defining the SCHBFR request. These RPL
parameters have meaning for SCHBFR:
ACB=address
AREA=address

If a buffer is found, the area whose address is specified contains its address (OPTCD=LOC) or a
copy of its contents (OPTCD=MVE). With compressed data sets, the contents of the buffer will not
be in a readable format. SCHBFR is not recommended for compressed data sets.

AREALEN=abs expression
At least 4 with OPTCD=LOC; at least control interval size with OPTCD=MVE.

ARG=address
ARG gives the address of an 8-byte field containing the beginning and ending control interval
RBAs of the range to be searched on. For compressed data sets, the RBA of another record or the

SCHBFR

160 z/OS: z/OS DFSMStvs Administration Guide

address of the next record in a buffer cannot be determined using the length of the current record
or the length of the record provided to VSAM.

For extended addressing, the addressof a 16-byte field containing the beginning and ending 8-
byte RBAs of the range.

ECB=address
OPTCD=({ASY|SYN},{LOC|MVE})
TRANSID=abs expression

All other RPL parameters are ignored. RPLs are assumed not to be chained. Control interval access is
assumed.

If the ACB to which the RPL is related has MACRF=GSR, the program issuing SCHBFR must be in
supervisor state with protection key 0 to 7.

SHOWCAT—display the catalog
The information shown here is provided for compatibility only.

The SHOWCAT (show, or display, the catalog) macro enables you to retrieve information from a catalog
independently of an open data set defined in the catalog.

The SHOWCAT macro has three forms: standard, list, and execute. Although the integrated catalog facility
catalog have different structures, the SHOWCAT macro supports integrated catalog facility catalogs. Thus,
all references to catalogs in this discussion of the SHOWCAT macro apply to integrated catalog facility
catalogs.

You can use the IGGSHWPL macro to generate a DSECT statement and labels for the fields in the
parameter list for SHOWCAT.

The entries in a catalog are interrelated. More than one entry is required to describe an object and its
associated objects; one entry points to one or more other entries, which point to yet others. Figure 5 on
page 161 shows the interrelationship among entries that describe the following types of objects:

• Alternate index (G)
• Cluster (C)
• Data component (D)
• Index component (I)
• Path (R)
• Upgrade set (Y)

For example, an alternate-index entry points to the entries of its data and index components, its base
cluster, and its path. SHOWCAT enables you to follow the arrows in Figure 5 on page 161. You first issue
SHOWCAT on the name of an object.

Figure 5. Interrelationships among catalog entries

SHOWCAT

Chapter 3. Customizing the DFSMStvs environment 161

The information VSAM returns to you includes the control interval numbers of catalog records in entries
describing associated objects. You then issue SHOWCAT on a control interval number to retrieve
information from one of these other entries.

The first time you issue SHOWCAT, VSAM searches VSAM catalogs in the following order to locate the
entry that describes the object you name:

1. The STEPCAT or JOBCAT user catalog or catalogs (catalogs can be concatenated under STEPCAT or
JOBCAT).

2. The master catalog.
3. When the object has a qualified name, the catalog, if any, whose name or alias is the same as the first-

level qualifier of the object's name.

VSAM returns the address of the access method control block that defines the catalog. In subsequent use
of SHOWCAT, you can specify that address, which causes VSAM to search only that catalog.

SHOWCAT should not be used for UNIX files because UNIX files are not reflected in the catalogs.
Specifying the path name in the NAME parameter is not valid and returns unpredictable results.

SHOWCAT is valid in AMODE 24 mode only.

SHOWCAT—standard form

The format of the SHOWCAT macro follows.

The format of the SHOWCAT macro.

Label Operand Parameters

[label] SHOWCAT [ACB=address]
[AREA=address]
[{CI=address|NAME=address}]

label
specifies 1 to 8 characters that provide a symbolic address for the SHOWCAT macro.

ACB=address
specifies the address of the access method control block that defines the catalog containing the entry
from which to display information. You issue the first SHOWCAT without ACB specified and VSAM
supplies it to you for the next SHOWCAT (see the description of the work area under the AREA
operand). Specifying ACB enables VSAM to go directly to the correct catalog without searching other
catalogs first. You should always specify ACB when specifying CI instead of NAME.

AREA=address
specifies the address of the work area in which to display the catalog information. The first 2 bytes of
the area must give the length of the area, including the 2 bytes. The minimum is 64. If the area is too
small, VSAM returns as much information as possible.

You can use the IGGSHWPL macro to generate a DSECT statement and labels for the fields in the work
area.

The format of the work area follows.

The format of the work area for the IGGSHWPL macro.

Offset Length Symbolic Name Description

0(X'00') 2 SHWLEN1 Length of the area, including the length of this field
(provided by you).

2(X'02') 2 SHWLEN2 Length of the area used by VSAM, including the length of
this field and the preceding field.

SHOWCAT

162 z/OS: z/OS DFSMStvs Administration Guide

The format of the work area for the IGGSHWPL macro. (continued)

Offset Length Symbolic Name Description

4(X'04') 4 SHWACBP The address of the ACB that defines the catalog that
contains the entry from which information is displayed.

8(X'08') 1 SHWTYPE Type of object about which information is returned:

C
Cluster

D
Data component

G
Alternate index

I
Index

R
Path

Y
Upgrade set

The following fields contain one set of information for C, G, R, and Y types and another set for D and I
types:

The format of the work area for C, G, R, and Y types follows.

The format of the work area for C, G, R, and Y types.

Offset Length or Bit Pattern Symbolic Name Description

9(X'09') 1 SHWATTR For C and Y types: reserved.

 For G type:

 x... SHWUP The alternate index may (1) or may not (0) be a
member of an upgrade set. One way of verifying
this is to display information for the upgrade set of
the base cluster and check whether it contains
control interval numbers of entries that describe
the components of the alternate index. Figure 5 on
page 161 shows how to get from the alternate
index's catalog entry to the entries that describe
its components (G to C to D to Y to D and I).

 .xxx xxxx Reserved.

 For R type:

 x... SHWUP The path is (1) or is not (0) defined for upgrading
alternate indexes.

 .xxx xxxx Reserved.

10(X'0A') 2 SHWASS0 The number of association pointers that follow.

SHOWCAT

Chapter 3. Customizing the DFSMStvs environment 163

The format of the work area for C, G, R, and Y types. (continued)

Offset Length or Bit Pattern Symbolic Name Description

 SHWACT Each association pointer identifies another catalog
entry that describes an object associated with this
C, G, R, or Y object. The possible types of
associated objects are:

• With C: D, G, I, R.
• With G: C, D, G, I.
• With R: C, D, G, I.
• With Y: D, I.

Figure 5 on page 161 shows how the catalog
entries for all these objects are interrelated.

12(X'0C') 1 SHWATYPE Type of object the entry describes.

13(X'0D') 3 SHWAC1 The control interval number of its first record.

16(X'10') Next association pointer, and so on. For type Y, if
the area is too small to display an association
pointer for each associated object, VSAM displays
as many pointers as possible and returns a code of
4 in register 15. For types C and G, if the area is too
small, VSAM displays as many pointers as
possible, but returns as a code of 0 in register 15
because fields for the main associated objects can
always be displayed (in the smallest allowed work
area). For type R, fields for all associated objects
(five possible) can always be displayed.

(An associated pointer occupies 4 bytes (1 byte for
the associated entry type and 3 bytes for its
control interval number). However, for all types
except Y, 4 additional bytes are required as work
space for the SHOWCAT processor. For example, if
you provide 80 bytes for associated objects, as
many as 10 association pointers can be displayed
for type C or G and 20 for type Y.)

The format of the work area for D and I types follows.

The format of the work area for D and I types.

Offset Length Symbolic Name Description

9(X'09') 1 Reserved.

10(X'0A') 2 SHWDSB Relative position of the prime key in records in
the data component.

 SHWRKP For the data component of an ESDS, there is
no prime key and this field is 0.

12(X'0C') 2 SHWKEYLN Length of the prime key.

14(X'0E') 4 SHWCISZ Control interval size of the data or index
component.

18(X'12') 4 SHWMREC Maximum record size of the data or index
component.

22(X'16') 2 SHWASS The number of association pointers that
follow.

SHOWCAT

164 z/OS: z/OS DFSMStvs Administration Guide

The format of the work area for D and I types. (continued)

Offset Length Symbolic Name Description

 SHWACT Each association pointer identifies another
catalog entry that describes an object
associated with this D or I object. The
possible types of associated objects are:

• With D: C, G, Y.
• With I: C, G.

Figure 5 on page 161 shows how the catalog
entries for all these objects are interrelated.

24(X'18') 1 SHWATYPE Type of object the entry describes.

25(X'19') 3 SHWACI The control interval number of its first record.

28(X'1C') Next association pointer, and so on. Fields for
all associated objects can always be
displayed.

{CI=address|NAME=address}
specifies the address of an area that identifies the catalog entry containing the desired information.
CI=address

specifies the area is 3 bytes long and contains the control interval number (RBA divided by 512) of
the first record in the catalog entry. You can issue the first SHOWCAT with NAME specified, and
then VSAM supplies control interval numbers to you for other SHOWCATs (see the description of
the work area under the AREA operand). The type of object named must be C, D, G, I, R, or Y. The
3-byte area must be separate from the work area, even though VSAM returns a control interval
number in the work area.

NAME=address
specifies the area is 44 bytes long and contains the name of the object described by the entry. The
name is left-justified and padded with blanks. The type of object named must be C, D, G, I, or R.

SHOWCAT—list form

The format of the list form of SHOWCAT follows.

The format of the list form of SHOWCAT.

Label Operand Parameters

[label] SHOWCAT [ACB=address]
[AREA=address]
[{CI=address|NAME=address
MF=L

MF=L
specifies that this is the list form of SHOWCAT.

AREA and {CI|NAME} are optional in the list form of SHOWCAT, but, if they are not so specified, they must
be specified in the execute form.

For a detailed description of ACB, AREA, and CI|NAME parameters, refer to the information contained in
“SHOWCAT—standard form” on page 162.

SHOWCAT—execute form

The format of the execute form of SHOWCAT follows.

SHOWCAT

Chapter 3. Customizing the DFSMStvs environment 165

The format of the execute form of SHOWCAT.

Label Operand Parameters

[label] SHOWCAT [ACB=address]
[AREA=address]
[{CI=address|NAME=address}]
MF=({E|B},address)

MF=({E|B},address)
specifies this is the execute form of SHOWCAT.
E

specifies the parameter list, whose address is given in address, is passed to VSAM for processing.
B

specifies the parameter list is to be built or modified, but is not passed to VSAM. This form of the
macro is similar to the list form, except that it works at execution time and can modify a
parameter list, as well as build it.

To build a parameter list, first issue SHOWCAT with only MF=(B, address) specified, to zero out the
area in which it will be built.

address
specifies the address of the parameter list. If you use register notation, you may use register 1,
and a register from 2 through 12. Register 1 is used to pass the parameter list to VSAM (MF=E).

For a detailed description of ACB, AREA, and CI|NAME parameters, refer to the information contained in
“SHOWCAT—standard form” on page 162.

Expressions that can be used for SHOWCAT

The values for an operand of SHOWCAT can be expressed as follows:

• An absolute numeric expression.
• A code or a list of codes separated by commas and enclosed in parentheses.
• A register (in parentheses) from 2 through 12 that contains an address or numeric value. In the execute

form of a macro, you can use register 1 for the address of the parameter list. Equated labels can be
used to designate a register; for example, BFRNO=(BFR#), where the equate statement, BFR# EQU 3, is
included in the program.

• An expression valid for a relocatable A-type address constant; for example, AREA=RETURN+4.

The expressions that can be used depend on the operand. Only absolute numeric expressions, codes,
registers, and relocatable A-type address constants are valid for the list form of a macro.

Table 21 on page 166 shows the expressions allowed for each operand of SHOWCAT.

Table 21. Operand expressions for the SHOWCAT macro. Operand expressions for the SHOWCAT macro

Operands

Absolute
numeric

Code

Register

A-type
address

SHOWCAT (STANDARD):
ACB
AREA
CI
NAME

X
X
X
X

X
X
X
X

SHOWCAT

166 z/OS: z/OS DFSMStvs Administration Guide

Table 21. Operand expressions for the SHOWCAT macro. Operand expressions for the SHOWCAT macro (continued)

Operands

Absolute
numeric

Code

Register

A-type
address

SHOWCAT (LIST):
ACB
AREA
CI
MF
NAME

X

X
X
X

X

SHOWCAT (EXECUTE):
ACB
AREA
CI
MF
 B
 E
 address
NAME

X
X

X
X
X

X
X

Understanding VSAM macro return and reason codes
This section describes the return codes and reason codes that are generated by the VSAM macros that
are used to open and close data sets, manage VSAM control blocks, and issue record management
requests.

VSAM sets the return codes in register 15. (For information on register usage conventions, see z/OS
DFSMS Macro Instructions for Data Sets.) These return codes are paired with reason codes that are set in
the access method control block (ACB) and the request parameter list (RPL). Reason codes that are set in
the ACB indicate open or close errors. Reason codes that are set in the RPL indicate record management
errors.

This section lists return codes and reason codes as decimal and hexadecimal values. The decimal value is
shown first, followed by the hexadecimal value in parentheses. For format descriptions and examples
macros, see “Coding VSAM macros” on page 117. Some VSAM reason codes that are used for diagnostic
purposes are described in “VSAM diagnostic aids” on page 285 or z/OS DFSMSdfp Diagnosis.

OPEN return and reason codes
When your program receives control after issuing an OPEN macro, the return code in register 15 indicates
whether all the data sets were opened successfully, as Table 22 on page 167 shows.

Table 22. Return codes in register 15 after OPEN. Return codes in register 15 after OPEN

Return code Meaning

0(X'0') All data sets were opened successfully.

4(X'4') All data sets were opened successfully, but one or more attention messages were issued (reason
codes less than X'80').

8(X'8') At least one data set (VSAM or non-VSAM) was not opened successfully; the access method control
block was restored to the contents it had before the OPEN was issued; or, if the data set was already
open, the access method control block remains open and usable and is not changed.

12(X'C') A non-VSAM data set was not opened successfully when a non-VSAM and a VSAM data set were being
opened at the same time. The non-VSAM data control block was not restored to the contents it had
before the OPEN was issued (and the data set cannot be opened without restoring the control block).

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 167

Table 22. Return codes in register 15 after OPEN. Return codes in register 15 after OPEN (continued)

Return code Meaning

16(X'10') One or more of the access method control blocks (ACBs) specified the RLS option but the system has
not been set up for RLS (the SMSVSAM server address space is not available). For other DCBs and ACBs
any condition described by other return codes is possible.

If register 15 contains a nonzero return code, use the SHOWCB macro to display the corresponding
reason code. The SHOWCB macro displays the error field in each access method control block specified
by the OPEN macro. (See z/OS DFSMS Macro Instructions for Data Sets.)

Table 23 on page 168 lists the reason codes that might be in this error field.

Table 23. OPEN reason codes in the ACBERFLG field of the ACB. OPEN reason codes in the ACBERFLG field of the ACB

Reason code Meaning

0(X'0') One of the following conditions exists:

• VSAM is processing the access method control block for some other request.
• The access method control block address is invalid.

72(X'48') One of the following errors occurred (a warning):

• A non-RLS or non-DFSMStvs OPEN for input was successful against a sphere that was already in a lost locks or
retained locks state.

• A non-RLS or non-DFSMStvs< OPEN for output was successful against a sphere that was already in a lost locks or
retained locks state because a NONRLSUPDATE was in effect.

76(X'4C') The interrupt recognition flag (IRF) was detected for a data set opened for input processing. This indicates that
DELETE processing was interrupted. The structure of the data set is unpredictable; the access method services
DIAGNOSE command can be used to check the data set for structural errors. For a description of the DIAGNOSE
command, see z/OS DFSMS Access Method Services Commands.

88(X'58') A previous extend error has occurred during EOV processing of the data set. For MACRF=RLS, reset processing of
"delete vol" has received an error.

92(X'5C') Inconsistent use of CBUF processing. Sharing options differ between index and data components.

96(X'60') An unusable data set was opened for input.

100(X'64') An OPEN found an empty alternate index that is part of an upgrade set.

101(X'65') For MACRF=RLS, the sphere that was opened is in lost locks state. The open was successful.

102(X'66') For MACRF=RLS, the sphere is in a non-RLS update permitted state. The open was successful.

103(X'67') For RLS, the sphere that was opened is in both a lost locks state and non-RLS update permitted state. The open is
successful. For DFSMStvs, the open succeeded, but one of the following conditions was detected:

• DFSMStvs is quiescing due to an I/O error on one of the system logs (the undo log or the shunt log).
• The forward recovery log is quiescing due to an I/O error. Processing continues without the forward recovery log.
• A failure occurred during an attempt to write a tie-up record to the forward recovery log. Processing continues

without the forward recovery log.
• The log of logs is quiescing due to an I/O error. Processing continues without the log of logs.
• A failure occurred during an attempt to write a tie-up record to the log of logs. Processing continues without the

log of logs.

104(X'68') The time stamp of the volume where the data set is stored does not match the system time stamp in the data set's
catalog record. This indicates extent information in the catalog record might not agree with the extents indicated in
the volume's VTOC.

108(X'6C') The time stamps of a data component and an index component do not match. This indicates that either the data or
the index has been updated separately from the other.

110(X'6E') JRNAD exit was not specified on the first ACB opened for the data set. Processing continues without journaling.

Return and Reason Codes

168 z/OS: z/OS DFSMStvs Administration Guide

Table 23. OPEN reason codes in the ACBERFLG field of the ACB. OPEN reason codes in the ACBERFLG field of the ACB (continued)

Reason code Meaning

116(X'74') The data set was not properly closed. The data set high-used RBA has not been verified. Records might be missing
or duplicated.

A previous VSAM program might have abnormally terminated.

You should verify that all of the expected records are in the data set. If you ignore the message and try to process
the data set, the results are unpredictable. The catalog will be updated when the data set has been successfully
opened for output and then successfully closed.

You can determine if this error occurred on opening an empty data set by using the SHOWCB macro instruction. The
SHOWCB macro instruction is described in z/OS DFSMS Macro Instructions for Data Sets. For additional information
on recovery processing, see z/OS DFSMS Using Data Sets.

118(X'76') The data set was not properly closed. The data set high-used RBA has been successfully verified. Records may be
missing or duplicated.

A previous VSAM program may have abnormally ended.

You should verify that all of the expected records are in the data set.

The catalog will be updated when the data set has been successfully opened for output and then successfully
closed. For additional information on recovery processing, see z/OS DFSMS Using Data Sets.

128(X'80') DD statement for this access method control block is missing or invalid.

131(X'83') An error was detected by VSAM for a media manager CONNECT.

132(X'84') One of the following errors occurred:

• Not enough storage was available for work areas.
• The required volume could not be mounted.
• A system logic error occurred while VSAM was accessing the job file control block (JFCB).
• The format-1 DSCB or the catalog cluster record is invalid.
• The user-supplied catalog name does not match the name on the entry.
• The user is not authorized to open the catalog as a catalog.
• For DFSMStvs:

– Unable to connect to the forward recovery log
– Unable to write tie-up record to the forward recovery log
– Data set cannot be opened because it needs to be forward recovered.
– DFSMStvs processing is not available.
– For a data set that was previously accessed for Permit Non-RLS Update (PNRLU) processing, an error

occurred attempting to write the PNRLU record to the undo log

133(X'85') Delete Volume processing for RESET(MACRF=RST) failed during open. The DDNAME needs to be freed and
reallocated to the data set.

134(X'86') Invalid UCB address for UCB address conversion.

136(X'88') Not enough virtual storage space is available in your program's address space for work areas, control blocks, or
buffers.

138(X'8A') A 24-bit UCB address is required for Volume Mount but a 31-bit UCB address was passed.

140(X'8C') The catalog indicates this data set has an invalid physical record size.

144(X'90') Uncorrectable I/O error occurred while VSAM reading or writing catalog record.

145(X'91') An uncorrectable error occurred in the VSAM volume data set (VVDS).

148(X'94') No record for the data set to be opened was found in the available catalogs, or an unidentified error occurred while
VSAM was searching the catalog. For the catalog return code, see system message IDC3009I.

For UNIX files, the requested file does not exist.

152(X'98') Authorization checking failed for one of the following reasons:

• The password specified in the access method control block for a specified level of access does not match the
password in the catalog for that level of access.

• RACF denied access. For the catalog return code, see system message IDC3009I in job output.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 169

Table 23. OPEN reason codes in the ACBERFLG field of the ACB. OPEN reason codes in the ACBERFLG field of the ACB (continued)

Reason code Meaning

160(X'A0') The operands specified in the ACB or GENCB macro are inconsistent either with each other or with the information
in the catalog record. One of these conditions was detected:

For option ACBRST:

• Path processing
• LSR or GSR

For option ACBICI:

• LSR or GSR
• Key-sequenced data set
• Path processing
• Sequence set with data
• Replicated index
• Block size not equal to CI size
• Extended format data set

For option ACBUBF:

• LSR or GSR
• ACBCNV not specified
• ACBKEY specified
• ACBADR specified

For option ACBSDS:

• LSR or GSR
• Path processing
• Upgrade processing

For option ACBCBIC:

• LSR or GSR
• ACBICI not specified

For MACRF=RLS, an invalid option was specified:

• Linear data sets, key range data sets, cluster IMBED attribute, user buffering option, or ICI not supported.
• MACRF=RLS was specified in addition to MACRF=NSR/LSR/GSR/ICI.
• Attempt to open a temporary data set, catalog, VVDS, or system data set for RLS or DFSMStvs access.
• Attempt to open a sphere with a specification of BWO=TYPEOTHER,TYPEIMS for RLS access.
• For extended-function data sets, ICI is not supported.

For miscellaneous options:

• Buffer space was specified, but the amount is too small to process the data set.
• Volume is not mounted.
• VSAM is trying to open an empty data set for input.

For a UNIX file, an invalid option or operand was specified.

• ACBCNV or ACBKEY
• ACBSKP
• ACBICI
• LSR, GSR, or RLS
• ACBSTRNO > 1.

164(X'A4') An uncorrectable I/O error occurred while VSAM was reading the volume label.

167(X'A7') For MACRF=RLS, open or close processing received an abend while processing the request.

Return and Reason Codes

170 z/OS: z/OS DFSMStvs Administration Guide

Table 23. OPEN reason codes in the ACBERFLG field of the ACB. OPEN reason codes in the ACBERFLG field of the ACB (continued)

Reason code Meaning

168(X'A8') The data set was not available for the type of processing that you specified. Or, an attempt was made to open a
reusable data set with the reset option while another user had the data set open. The data set might have the
INHIBIT attribute specified.

The data set cannot be opened for CBUF processing because it was already opened for non-CBUF processing. Or,
the data set has conflicting CBUF attributes for the data and index components of the ACB.

For MACRF=RLS, an attempt was made to access a data set with NSR/LSR/GSR and the data set is currently
accessed by RLS or DFSMStvs, or vice versa. Or, an attempt was made to access the data set with NSR/LSR/GSR
and the data set is in lost or retained locks state.

For a UNIX file, the file type is not supported (for example, directories are not supported).

169(X'A9') For MACRF=RLS, an attempt was made to access an ACB for RLS processing on a previous release of DFSMS that
does not have RLS function.

170(X'AA') For MACRF=RLS, an ACB specified a SUBSYSNM name that is already registered to a previous server instance.

171(X'AB') For MACRF=RLS, required CF cache is unavailable from this system.

172(X'AC') For MACRF=RLS, the CF cache structure failed.

173(X'AD') For MACRF=RLS, required CF cache structure is in a quiescing or quiesced state.

174(X'AE') One of the following errors occurred:

• For MACRF=RLS, when DFSMStvs is not active on the system, SUBSYSNM was not specified in the ACB and an
attempt was made to open a data set for output to a recoverable sphere. (In that situation, if DFSMStvs is active
on the system, the data set would be opened for DFSMStvs without this error.)

• The LOG parameter was changed to LOG(NONE) while recovery was pending against the data set.

175(X'AF') For MACRF=RLS, locks have been lost. This is an attempt by a new sharing SUBSYSNM to access a data set for
which not all recovery has completed. The open is not successful.

177(X'B1') For RLS or DFSMStvs, the open is rejected because the sphere is marked VSAM quiesced.

178(X'B2') For MACRF=RLS, the open is rejected. The sphere is VSAM-quiescing and this is an attempt by a new application.

179(X'B3') For MACRF=RLS, the open is rejected. The sphere is VSAM-quiescing in preparation for a data set copy.

180(X'B4') A VSAM catalog specified in JCL either does not exist or is not open, and no record for the data set to be opened
was found in any other catalog.

181(X'B5') For MACRF=RLS, the DISP value specified is not consistent with the DISP value specified by another application
that has opened this data set for RLS access. Either this application is requesting DISP=SHR while another
application holds DISP=OLD or vice-versa.

182(X'B6') For MACRF=RLS, the SMSVSAM server is not available.

183(X'B7') For MACRF=RLS, open, invalid backup-while-open (BWO) flags in the catalog.

184(X'B8') An uncorrectable I/O error occurred while VSAM was completing an I/O request.

188(X'BC') The data set that is indicated by the access method control block is not of the type that can be specified by an
access method control block. Or the access method control block (ACB) has already been opened or closed.

189(X'BC') The Exit List (EXLST) is invalid because the length is incorrect.

190(X'BE') An invalid high-allocated RBA was found in the catalog entry for this data set. The catalog entry is bad and will have
to be restored.

192(X'C0') An unusable data set was opened for output.

193(X'C1') The interrupt recognition flag (IRF) was detected for a data set opened for output processing. This indicates that
DELETE processing was interrupted. The structure of the data set is unpredictable. The access method services
DIAGNOSE command may be used to check it for structural errors. For a description of the DIAGNOSE command,
see z/OS DFSMS Access Method Services Commands.

194(X'C2') An open of the data component of a compressed format key-sequenced data set is not allowed. For MACRF=RLS,
an attempt was made to open an alternate index cluster or an individual component of a KSDS data set. KSDS
components cannot be opened for RLS processing.

195(X'C3') For MACRF=RLS, the SMS Storage Class does not specify a coupling facility CACHESET name.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 171

Table 23. OPEN reason codes in the ACBERFLG field of the ACB. OPEN reason codes in the ACBERFLG field of the ACB (continued)

Reason code Meaning

196(X'C4') Access to data was requested via an empty path.

For MACRF=RLS:

• Access to data was requested through an empty path.
• Attempt to access a VSAM data set for RLS processing via an Alternate Index which is not part of the Upgrade

Set.

197(X'C5') Catalog indicated RLS recovery required but user's ACB did not specify recovery processing.

198(X'C6') For MACRF=RLS, an open is rejected because a volume quiesce is in progress or a required volume is marked as
"quiesced".

200(X'C8') The format-4 DSCB indicates that the volume is unusable.

201(X'C9') For MACRF=RLS, the sphere is not currently assigned to a CF cache, and there are no CF caches available from this
system that could be assigned to the sphere.

202(X'CA') For MACRF=RLS, a SUBSYSNM violation occurred. The SUBSYSNM name specified is different from the subsystem
name registered for this address space.

203(X'CB') For MACRF=RLS, the JRNAD exit requested for ACB being opened for RLS processing.

204(X'CC') The ACB MACRF specification is GSR and the caller is not operating in protect key 0 to 7. Or, the ACB MACRF
specification is CBIC (Control Blocks in Common) and the caller is not operating in supervisor state with protect key
0 to 7.

205(X'CD') The ACBCATX option or VSAM volume data set open was specified and the calling program was not authorized.

206(X'CE') For MACRF=RLS, the LOG parameter that is associated with the base cluster is undefined.

207(X'CF') RLS SUBSYSNM name contains invalid characters.

208(X'D0') System logic error.

209(X'D1') RLS or DFSMStvs open internal logic error detected.

210(X'D2') RLS or DFSMStvs open requested for non-SMS-managed data set.

212(X'D4') The ACB MACRF specification is GSR or LSR and the data set requires load mode processing.

213(X'D5') For MACRF=RLS, the LOG parameter is ALL and the LOGSTREAMID either was not specified or specifies a DFSMStvs
system (undo or shunt) log.

214(X'D6') For DFSMStvs, the maximum logical record length for the data set is larger than the length that DFSMStvs supports
for logging.

216(X'D8') The ACB MACRF specification is GSR or LSR and the key length of the data set exceeds the maximum key length
specified in BLDVRP.

220(X'DC') The ACB MACRF specification is GSR or LSR and the data set's control interval size exceeds the size of the largest
buffer specified in BLDVRP.

224(X'E0') Improved control interval processing is specified and the data set requires load mode processing.

228(X'E4') The ACB MACRF specification is GSR or LSR and the VSAM shared resource table (VSRT) does not exist (no buffer
pool is available).

229(X'E5') OPEN failed because a BLDVRP or DLVRP is already in progress. A retry of the OPEN is suggested.

230(X'E6') OPEN failed because the maximum number of alternate indexes (255) has been exceeded.

231(X'E7') OPEN failed because the maximum number of VSAM control blocks has been exceeded.

232(X'E8') Reset was specified for a non-reusable data set and the data set is not empty.

236(X'EC') System logic error.

240(X'F0') Format-4 DSCB and volume timestamp verification failed during volume mount processing for output processing.

244(X'F4') The volume containing the catalog recovery area was neither mounted nor verified for output processing.

245(X'F5') An attempt was made to open a compressed format data set without sufficient hardware, ESCON channels and
concurrent copy capable control units, or a compressed format device was required.

246(X'F6') The compression management services open or close function failed.

Return and Reason Codes

172 z/OS: z/OS DFSMStvs Administration Guide

Table 23. OPEN reason codes in the ACBERFLG field of the ACB. OPEN reason codes in the ACBERFLG field of the ACB (continued)

Reason code Meaning

247(X'F7') An error occurred while retrieving the dictionary token from the extended format cell.

250(X'FA') DSAB match not found.

VSAM also writes a message to the operator console and the programmer's listing that explains the error
in more detail.

CLOSE return and reason codes
When your program receives control after it has issued a CLOSE macro, a return code in register 15
indicates whether all VSAM data sets were closed successfully, as Table 24 on page 173 shows.

Table 24. Return codes in register 15 after CLOSE. Return codes in register 15 after CLOSE

Return code Meaning

0(X'0') All data sets were closed successfully.

4(X'4') At least one data set (VSAM or non-VSAM) was not closed successfully.

If register 15 contains 4, use SHOWCB to display the ERROR field in each access method control block to
determine if a VSAM data set was not closed successfully and the reason it was not. See z/OS DFSMS
Macro Instructions for Data Sets. Table 25 on page 173 lists the reason codes that the ERROR field might
contain after close processing.

Table 25. CLOSE reason codes in the ACBERFLG field of the ACB. CLOSE reason codes in the ACBERFLG field of the ACB

Reason code Meaning

0(X'0') No error (set when register 15 contains 0).

4(X'4') The data set indicated by the access method control block is already closed.

129(X'81') CLOSE TYPE=T was issued for a VSAM data set that is not open for VSAM processing.

132(X'84') An uncorrectable I/O error occurred while VSAM was reading the job file control block (JFCB).

136(X'88') Not enough virtual storage was available in your program's address space for a work area for close
processing.

144(X'90') An uncorrectable I/O error occurred while VSAM was reading or writing a catalog record.

145(X'91') An uncorrectable error occurred in the VSAM volume data set (VVDS).

148(X'94') An unidentified error occurred while VSAM was searching the catalog.

For a UNIX file, an unidentified error occurred.

167(X'A7') For MACRF=RLS, abend occurred during open or close processing.

170(X'AA') For MACRF=RLS, the required CF Cache is unavailable from this system.

172(X'AC') Close was successful, but DFSMStvs was unable to write a close record to the log of logs, the forward
recovery log, or both.

184(X'B8') An uncorrectable I/O error occurred while VSAM was completing outstanding I/O requests. For a UNIX
file, an error occurred while VSAM was flushing output data or disconnecting from the file.

185(X'B9') LSR/GSR - Error in WRTBFR: I/O for data set not quiesced before WRTBFR TYPE=DS during close
processing.

188(X'BC') The data set indicated by the ACB is not the type that may be specified by an ACB.

For MACRF=RLS, an invalid ACB address is specified for close processing.

236(X'EC') System logic error because the function no longer is supported.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 173

Table 25. CLOSE reason codes in the ACBERFLG field of the ACB. CLOSE reason codes in the ACBERFLG field of the ACB
(continued)

Reason code Meaning

246(X'F6') A call to compression management services (CMS) failed.

In addition to these reason codes, VSAM writes a message to the operator's console and the
programmer's listing further explaining the error.

Control block manipulation macro return and reason codes
The GENCB, MODCB, SHOWCB, and TESTCB macros can be run (unlike the ACB, EXLST, and RPL macros).
These macros cause control to be given to VSAM to perform the indicated task. VSAM indicates whether
the task was completed by placing a return code in register 15. Table 26 on page 174 lists the possible
return codes after one of these macros runs.

Table 26. Return codes in register 15 after control block manipulation macros. Return codes in register 15 after control
block manipulation macros

Return code Meaning

0(X'0') Task completed.

4(X'4') Task not completed.

8(X'8') An attempt was made to use the execute form of a macro to modify a keyword that is not in the
parameter list. (See “Use of list, execute, and generate forms of VSAM macros” on page 118.)

You can cause an error if you specify the operands incorrectly.

When register 15 contains 4, register 0 contains a reason code indicating why VSAM could not perform
the task. If you construct the parameter list, register 0 can contain reason codes 1, 2, 3, 10, 14, 20, and
21.

Table 27 on page 174 describes each reason code returned in register 0.

Table 27. GENCB, MODCB, SHOWCB, and TESTCB reason codes returned in register 0. GENCB, MODCB, SHOWCB, and
TESTCB reason codes returned in register 0

Reason code
Applicable macros“1”
on page 175 Reason VSAM could not perform the task

1(X'1') G,M,S,T The request type (generate, modify, show, or test) is invalid.

2(X'2') G,M,S,T The block type (access method control block, exit list, or request parameter
list) is invalid.

3(X'3') G,M,S,T One of the keyword codes in the parameter list is invalid.

4(X'4') M,S,T The block at the address indicated is not of the type you indicated (access
method control block, exit list, or request parameter list).

5(X'5') S,T Access method control block fields were to be shown or tested, but the data
set is not open or it is not a VSAM data set.

6(X'6') S,T Access method control block information about an index was to be shown or
tested, but no index was opened with the data set.

7(X'7') M,S An exit list was to be modified, but the list was not large enough to contain the
new entry. Or, an exit was to be modified or shown but the specified exit wasn't
in the exit list. (With TESTCB, if the specified exit address is not present, you
get an unequal condition when you test for it.)

8(X'8') G There is not enough virtual storage in your program's address space to
generate the access method control blocks, exit lists, or request parameter
lists and no work area outside your address space was specified.

Return and Reason Codes

174 z/OS: z/OS DFSMStvs Administration Guide

Table 27. GENCB, MODCB, SHOWCB, and TESTCB reason codes returned in register 0. GENCB, MODCB, SHOWCB, and
TESTCB reason codes returned in register 0 (continued)

Reason code
Applicable macros“1”
on page 175 Reason VSAM could not perform the task

9(X'9') G,S The work area specified was too small for generation or display of the indicated
control block or fields.

10(X'A') G,M With GENCB, exit list control block type was specified and you specified an exit
without giving an address. With MODCB, exit list control block type was
specified and you specified an exit without giving an address. In this case,
either active or inactive must be specified, but load cannot be specified.

11(X'B') M Either (1) a request parameter list was to be modified, but the request
parameter list defines an asynchronous request that is active (that is, no
CHECK or ENDREQ has been issued on the request) and thus cannot be
modified; or (2) MODCB is already issued for the control block, but has not yet
completed.

12(X'C') M An access method control block was to be modified, but the data set identified
by the access method control block is open and cannot be modified.

13(X'D') M An exit list was to be modified, and you attempted to activate an exit without
providing a new exit address. Because the indicated exit list does not contain
an address for that exit, your request cannot be honored.

14(X'E') G,M,T One of the option codes (for MACRF, ATRB, or OPTCD) has an invalid
combination of option codes specified (for example, OPTCD=(ADR,SKP)).

15(X'F') G,S The work area specified did not begin on a fullword boundary.

16(X'10') G,M,S,T A VTAM® keyword or subparameter was specified but the AM=VTAM parameter
was not specified. AM=VTAM must be specified to process a VTAM version of
the control block.

19(X'13') M,S,T A keyword was specified that refers to a field beyond the length of the control
block located at the indicated address. (For example, a VTAM keyword is
specified, but the control block it points to is a shorter, non-VTAM block.)

20(X'14') S Keywords were specified that apply only if MACRF includes LSR or GSR.

21(X'15') S,T The block to be displayed or tested does not exist because the data set is a
dummy data set.

22(X'16') S AM=VTAM was specified and the RPL FIELDS parameter conflicts with the
RPLNIB bit status. Either RPLFIELDS=NIB was specified and the RPLNIB was
off, or RPL FIELDS=ARG was specified and the RPLNIB bit was on.

23(X'17') G The value specified in the work area length parameter exceeds the 65,535 byte
limit.

24(X'18') S,T The SMSVSAM server is not available.

25(X'19') S LOKEY is not supported for MACRF=RLS.

26(X'1A') S,T This request was issued against an ACB open to a different instance of the
SMSVSAM server. The OPEN is no longer valid.

27(X'1A') G,M,S,T This request was issued in AR ASC mode, home ASC mode. Or the RLS address
space had to be accessed and the request was issued in secondary ASC mode.

Note:

1. G=GENCB, M=MODCB, S=SHOWCB, T=TESTCB

Record management return and reason codes

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 175

The following record management macros give return codes and reason codes in the feedback area of the
RPL: GET, PUT, POINT, ERASE, VERIFY, CHECK, ENDREQ, GETIX, PUTIX, WRKBFR, SCHBFR, VERIFY,
VERIFY REFRESH, and WRTBFR.

The feedback word in the RPL consists of 4 bytes:
Byte

Description
0

Problem determination function (PDF) code. This code is used to locate the point in VSAM record
management where a logical error condition is recognized. A description of the returned PDF code is
located in the IDARMRCD macro.

1
RPL return code. This code is returned in register 15.

2
Component code. This code specifies the component being processed when the error occurred.

3
Reason code. This code, when paired with the return code in byte 2, specifies the reason for either a
successful completion or an error.

Bytes 2 through 4 make up the RPL feedback area. An explanation of the codes that appear in these three
bytes follows.

Bytes 3 and 4 make up the RPL condition code. An explanation of this code also follows.

The field name of each byte appears within parentheses in the following figure.

Return codes (RPLRTNCD)

The meaning of the return code depends on whether the processing is asynchronous or synchronous.

Asynchronous request

After you issue an asynchronous request for access to a data set, VSAM sets a return code in register 15
to indicate whether the request was accepted. Table 28 on page 176 describes each return code returned
in register 15.

Table 28. Return code in register 15 after an asynchronous request. Return code in register 15 after an asynchronous
request

Return code (RPLRTNCD) Meaning

0(X'0') Request was accepted.

4(X'4') Request was not accepted because the request parameter list indicated by the
request (RPL=address) was active for another request.

If the asynchronous request was accepted, issue a CHECK after doing your other processing. This way
VSAM can indicate in register 15 whether the request was completed successfully, set a return code in
the feedback area, and exit to any appropriate exit routine.

Return and Reason Codes

176 z/OS: z/OS DFSMStvs Administration Guide

If the request was not accepted, you should either wait until the other request is complete (for example,
by issuing a CHECK on the request parameter list) or terminate the other request (using ENDREQ). Then
you can reissue the rejected request.

Synchronous request

After a synchronous request, or a CHECK or ENDREQ macro, the return code in register 15 indicates if the
request completed successfully. Table 29 on page 177 describes each return code returned in register
15.

Table 29. Return code in register 15 after a synchronous request. Return code in register 15 after a synchronous
request

Return code (RPLRTNCD) Meaning

0(X'0') Request completed successfully.

4(X'4') Request was not accepted because the request parameter list indicated by the
request (RPL=address) was active for another request.

8(X'8') Logical error; specific error is indicated in the RPL feedback area.

12(X'C') Physical error; specific error is indicated in the RPL feedback area.

Component codes (RPLCMPON)

When a logical or physical error occurs, VSAM uses the RPL component code field to identify the
component being processed when the error occurred. VSAM also indicates whether the alternate index
upgrade set is correct after the request that failed. You can use the SHOWCB and TESTCB macro to
display and test a component code. Table 30 on page 177 lists the component codes and their meanings.

Table 30. Component codes provided in the RPL. Component codes provided in the RPL

Component code (RPLCMPON) What was being processed Upgrade set status

0(X'0') Base cluster Correct

1(X'1') Base cluster May be incorrect

2(X'2') Alternate index Correct

3(X'3') Alternate index May be incorrect

4(X'4') Upgrade set Correct

5(X'5') Upgrade set May be incorrect

The component code (byte 3 of the RPL feedback word) and the reason code (byte 4 of the RPL feedback
word) make up the two-byte RPL condition code.

Reason codes (RPLERRCD)

The 0, 8, and 12 return codes in register 15 are paired with reason codes in the RPL feedback area.

The reason codes in the RPL feedback area can be examined with the SHOWCB or TESTCB macro. Code
your examination routine immediately following the request macro. Logical errors, physical errors, and
reaching the end of the data set all cause VSAM to exit to the appropriate exit routine, if one is provided.

Coordinate error checking in your program with your error-analysis exit routines. If they terminate the
program, for instance, you do not need to code a check for an error after a request. But, if a routine
returns to VSAM to continue processing, you should check register 15 after a request to determine if there
was an error. Even when an error is handled by an exit routine, you may want to modify processing
because of the error.

Reason code (successful request)

When the request is completed, register 15 indicates the status of the request. A reason code of 0
indicates successful completion. Table 31 on page 178 lists nonzero reason codes and their meanings.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 177

Table 31. Successful-completion reason codes in the feedback area of the request parameter list. Successful-completion
reason codes in the feedback area of the request parameter list

Reason code (RPLERRCD) when
register 15=0(X'0') Meaning

0(X'0') Request completed successfully.

4(X'4') Request completed successfully. For retrieval, VSAM mounted another volume to
locate the record. For storage, VSAM allocated additional space or mounted another
volume.

8(X'8') For GET requests, indicates a duplicate alternate key exists (applies only when
accessing a data set using an alternate index that allows non-unique keys). For PUT
requests, indicates that a duplicate key was created in an alternate index with the
non-unique attribute.

12(X'C') All buffers, except for the buffer just obtained, might have been modified and might
need to be written. IBM suggests that you issue the WRTBFR macro.

16(X'10') The sequence-set record does not have enough space to allow it to address all the
control intervals in the control area that should contain the record. The record was
written into a new control area.

20(X'14') Mass Storage System macros CNVTAD, MNTACQ, and ACQRANGE are no longer
supported.

24(X'18') Buffer found but not modified; no buffer writes performed.

28(X'1C') Control interval split indicator was detected during an addressed GET NUP request.

32(X'20') Request deferred for a resource held by the terminated RPL is asynchronous and
cannot be restarted.

A MRKBFR request is invalid because no candidate buffers can be found.

For MACRF=RLS, there are no locks to retain because no update locks exist for this
CICS address space, CICS transaction, or SPHERE.

36(X'24') Possible data set error condition was detected.

40(X'28') Possible data set error condition was detected.

43(X'2B') EOV called to retrieve or update the dictionary token in the extended format cell.

44(X'2C') EOV called to update catalog statistics.

Reason code (logical errors)

If a logical error occurs and you have no LERAD routine (or the LERAD exit is inactive), VSAM returns
control to your program following the last executed instruction. For information on the LERAD routine, see
z/OS DFSMS Using Data Sets.

The return code in register 15 indicates a logical error (8), and the RPL feedback area contains a reason
code identifying the error. Register 1 points to the RPL.

Some VSAM reason codes for logical errors, used for diagnosis purposes, are shown in z/OS DFSMSdfp
Diagnosis.

Table 32 on page 179 lists the feedback area reason codes and their meanings. Some of these reason
codes in the figure use the term LUWID in their meaning column. For a CICS application, LUWID is a CICS
transaction identifier. For a batch job, LUWID is a unique value that RLS assigned to the address space.
For DFSMStvs, LUWID is a unique value assigned to each unit of recovery (UR).

Return and Reason Codes

178 z/OS: z/OS DFSMStvs Administration Guide

Table 32. Logical-error reason codes in the feedback area of the request parameter list. Logical-error reason codes in the
feedback area of the request parameter list

Reason code (RPLERRCD) when
register 15=8(X'8') Meaning

4(X'4') End of data set found (during sequential or skip sequential retrieval), or the search
argument is greater than the high key of the data set. Either no EODAD routine is
provided, or one is provided, returned to VSAM, and the processing program issued
another GET. (For information on the EODAD routine, see z/OS DFSMS Using Data Sets.)

8(X'8') You attempted to store a record with a duplicate key, or there is a duplicate record for
an alternate index with the unique key option.

12(X'C') An attempt was made to perform sequential or skip-sequential processing against a
record whose key/record number does not follow the proper ascending/descending
sequential order. The error may occur under any one of the following processing
conditions:

• For a key-sequenced data set

– PUT sequential or skip-sequential processing
– GET sequential, single-string input only
– GET skip-sequential processing and the previous request is not a POINT

• For a relative record data set

– GET skip-sequential processing
– PUT skip-sequential processing

16(X'10') Record not found, or the RBA is not found in the buffer pool. (If multiple RPL requests
are issued for alternate indexes, getting return code 16(X'10') might mean a temporary
situation where processing has not been completed on either the base cluster or the
associated alternate indexes.)

20(X'14') Control interval exclusive use conflict. The address of the RPL that owns the resource
is placed in the first word in the RPL error message area.

For VSAM RLS and DFSMStvs, another RPL that is used by this LUWID or UR holds an
exclusive lock on this record. This code means that there was an intra-LUWID
exclusive control conflict. If an RPL message area of sufficient length is specified, the
following information is returned.

Offset Length Description

0 4 Address of RPL in exclusive control
4 1 Flag Byte: - Not used For RLS
 X'00'--neither RPL doing a control
 area split
 X'01'--current RPL doing a control
 area split
 X'02'--other RPL doing a control
 area split

If this request's RPL specifies a MSGAREA of length 4 bytes or greater, the address of
an RPL whose lock on this record caused this request to be rejected is returned in the
first 4 bytes of MSGAREA. The application may choose to issue an ENDREQ on that RPL
and then reissue this POINT, GET NUP, or GET UPD request.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 179

Table 32. Logical-error reason codes in the feedback area of the request parameter list. Logical-error reason codes in the
feedback area of the request parameter list (continued)

Reason code (RPLERRCD) when
register 15=8(X'8') Meaning

21(X'15') For VSAM RLS and DFSMStvs, another LUWID holds an exclusive lock on this record.
The combination of one or more LUWIDs waiting for other record locks held by this
LUWID and this LUWID waiting for this record lock produced a deadlock.

If an RPL message area of sufficient length (four bytes or longer) is specified, and the
requestor is a commit protocol application (for example, CICS), the following
information is returned in the RPL message area:

Offset Length Description

0 4 Address of problem determination area
 If you see this error, you are required
 to free this area, for example, with:
 ?STORAGE (RELEASE) where LENGTH=VPDISIZE,
 SP=0,KEY=user's key.

22(X'16') For VSAM RLS and DFSMStvs, another LUWID holds an exclusive lock on this record.
This request waited for the record lock until the timeout interval expired.

If an RPL message area of sufficient length (four bytes or longer) is specified, and the
requestor is a commit protocol application (for example, CICS), the following
information is returned in the RPL message area:

Offset Length Description

0 4 Address of problem determination area.
 If you see this error, you are required
 to free this area, for example, with:
 ?STORAGE (RELEASE) where LENGTH=VPDISIZE,
 SP=0,KEY=user's key.

24(X'18') Record resides on a volume that cannot be mounted.

For VSAM RLS and DFSMStvs, another LUWID holds a retained lock on this record. This
can occur if the other UR closed the data set with the UR inflight and it was the last
close of the data set on the system.

If an RPL message area of sufficient length (four bytes or longer) is specified, the
following information is returned in the RPL message area:

Offset Length Description

0 4 Address of problem determination area.
 If you see this error, you are required
 to free this area, for example, with:
 ?STORAGE (RELEASE) where LENGTH=VPDISIZE,
 SP=0,KEY=user's key.

For non-RLS, message area information is not returned.

28(X'1C') Data set cannot be extended because VSAM cannot allocate additional direct access
storage space. Either there is not enough space left to make the secondary allocation
request, or you attempted to increase the size of a data set while processing with
SHAREOPTIONS=4 and DISP=SHR.

For VSAM RLS and DFSMStvs, the error can occur for a GET request when the same
error has been issued for a preceding PUT request on the same ACB.

32(X'20') You specified an RBA that does not give the address of any data record in the data set.

36(X'24') Key ranges were specified for the data set when it was defined, but no range was
specified that includes the record to be inserted.

Return and Reason Codes

180 z/OS: z/OS DFSMStvs Administration Guide

Table 32. Logical-error reason codes in the feedback area of the request parameter list. Logical-error reason codes in the
feedback area of the request parameter list (continued)

Reason code (RPLERRCD) when
register 15=8(X'8') Meaning

40(X'28') Insufficient virtual storage in your address space to complete the request.

44(X'2C') Work area not large enough for the data record or for the buffer (GET with
OPTCD=MVE).

48(X'30') Invalid options, data set attributes, or processing conditions:

• CNV processing
• The specified RPL is asynchronous
• Chained RPLs
• Path processing
• Shared resources (LSR/GSR) indeterminate buffer status
• Load mode
• Fixed-length relative record data set
• Data set contains spanned records
• User not in key 0 and supervisor state
• End-of-volume in process (secondary allocation).

52(X'34') Invalid options, data set attributes, or processing conditions specified by MVS/DFP™.
(See X'34' for a list of the invalid options).

56(X'38') Error from catalog update at the beginning of a CI/CA split for backup while open.

For VSAM RLS and DFSMStvs, this error indicates an invalid reuse of an RLS RPL.

This RPL has position established for VSAM RLS and DFSMStvs access to a data set.
The application has changed the ACB or the LUWID, or both. VSAM RLS and DFSMStvs
do not permit this form of RPL reuse. This error does not change or lose the string's
position. Before changing the ACB or LUWID, the application must issue an ENDREQ on
the RPL to release the string's position.

RPL reuse violation. The RPL request had positioning information from a previous
request and the ACB or LUWID specified in the RPL, or both, did not match that of the
prior request.

64(X'40') There is insufficient storage available to add another string dynamically. Or, the
maximum number of place holders that can be allocated to the request has been
allocated, and a place holder is not available.

For VSAM RLS and DFSMStvs, the limit of 1024 outstanding requests for this ACB has
been exceeded.

68(X'44') The application attempted to use a type of processing (output or control interval
processing) that was not specified when the data set was opened.

72(X'48') The application made a keyed request for access to an entry-sequenced data set. Or,
the application issued a GETIX or PUTIX to an entry-sequenced data set or fixed-
length RRDS.

For VSAM RLS and DFSMStvs, the application issued a GETIX or PUTIX. GETIX and
PUTIX are not supported by VSAM RLS and DFSMStvs

76(X'4C') The application issued an addressed or control interval PUT to add to a key-sequenced
data set or variable-length RRDS. Or, the application issued a control interval PUT to a
fixed-length RRDS.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 181

Table 32. Logical-error reason codes in the feedback area of the request parameter list. Logical-error reason codes in the
feedback area of the request parameter list (continued)

Reason code (RPLERRCD) when
register 15=8(X'8') Meaning

80(X'50') The application issued an ERASE request in one of the following situations:

• For access to an entry-sequenced data set
• For access to an entry-sequenced data set via a path.
• With control interval access.

84(X'54') The application specified OPTCD=LOC in one of the following situations:

• For a PUT request.
• In the previous request parameter list in a chain of request parameter lists.
• For UBF processing.

88(X'58') The application issued a sequential GET request without being positioned to it. Or, the
application changed from addressed access to keyed access without being positioned
for keyed-sequential retrieval. No positioning was established for a sequential PUT
insert for an RRDS. Or, the application attempted an illegal switch between forward
and backward processing.

92(X'5C') The application issued a PUT for update, an ERASE without a previous GET for update,
or a PUTIX without a previous GETIX. For DFSMStvs, this can also mean that the
application issued a PUT UPD or an ERASE without the GET UPD in the same unit of
recovery. This means that if the application did the GET UPD, the application did a
commit or a backout before doing the PUT UPD or ERASE.

96(X'60') The application attempted to change the prime key or key of reference while making
an update. Or, for MACRF=RLS, the PUT NUP request attempted to change the key that
a prior IDALKADD request specified.

100(X'64') The application attempted to change the length of a record while making an addressed
update.

104(X'68') The RPL options are either invalid or conflicting in one of the following ways:

• SKP was specified and either KEY was not specified or BWD was specified.
• XRBA was not specified in the RPL OPTCD when a GET DIR or a POINT request was

issued in ADR or CNV mode with LRD=OFF, and RPLARG points to a nonzero
argument (RBA), while processing an extended-addressing data set.

• BWD was specified for CNV processing.
• FWD and LRD were specified.
• Neither ADR, CNV, nor KEY was specified in the RPL.
• BFRNO is invalid (less than 1 or greater than the number of buffers in the pool).
• WRTBFR, MRKBFR, or SCHBFR was issued, but either TRANSID was greater than 31

or the shared resource option was not specified.
• ICI processing was specified, but a request other than a GET or a PUT was issued.
• MRKBFR MARK=OUT or MARK=RLS was issued but the RPL did not have a data

buffer associated with it.
• The RPL specified WAITX, but the ACB did not specify LSR or GSR.
• CNV processing is not allowed for compressed data sets. Only VERIFY and VERIFY

REFRESH are allowed.
• VERIFY was specified for a UNIX file.
• BWD or UPD was specified for a UNIX file.
• DIR was specified for a UNIX file that is an FIFO or character special file.
• Non-key access issued against extended-format, extended-addressing data set

when RBA/XRBA is required for positioning.

Return and Reason Codes

182 z/OS: z/OS DFSMStvs Administration Guide

Table 32. Logical-error reason codes in the feedback area of the request parameter list. Logical-error reason codes in the
feedback area of the request parameter list (continued)

Reason code (RPLERRCD) when
register 15=8(X'8') Meaning

108(X'6C') Incorrect RECLEN. Some possible reasons are:

1. RECLEN specified was larger than the maximum allowed, equal to 0, or smaller
than the sum of the length and the displacement of the key field.

2. RECLEN was not equal to record (slot) size specified for a fixed-length RRDS.
3. RECLEN was not sufficient to contain the new alternate index key pointer. With

nonunique UPGRADE alternate indexes, the record is automatically increased in
size each time a record is added to the base cluster and this can cause an incorrect
RECLEN. Make sure the maximum RECORDSIZE on the alternate index is large
enough for all base pointers it must contain.

112(X'70') KEYLEN specified was too large or equal to 0.

116(X'74') During initial data set loading (that is, when records are being stored in the data set the
first time it is opened), GET, POINT, ERASE, direct PUT, skip-sequential PUT, or PUT
with OPTCD=UPD is not allowed. For initial loading of a fixed length RRDS, the request
was other than a PUT insert.

120(X'78') Request was operating under an incorrect TCB. For example, an end-of-volume call or
a GETMAIN macro was necessary to complete the request, but the request was issued
from a task other than the one that opened the data set. The request can be
resubmitted from the correct task if the new request reestablishes positioning.

124(X'7C') A request was cancelled for a user JRNAD exit.

128(X'80') A loop exists in the index horizontal pointer chain during index search processing.

132(X'84') An attempt was made in locate mode to retrieve a spanned record.

136(X'88') The application attempted an addressed GET of a spanned record in a key-sequenced
data set.

140(X'8C') The spanned record segment update number is inconsistent.

144(X'90') Invalid pointer (no associated base record) in an alternate index.

If multiple RPL requests are issued for alternate indexes, getting return code
144(X'90') might mean a temporary situation where processing has not been
completed on either the base cluster or the associated alternate indexes.

For example, you have issued multiple RPL requests including erase requests to the
path or base cluster, and got a return code of X'90'. This might be a temporary
situation where the base cluster has been erased, but the associated alternate index
has not been erased. If you provide a message area using the MSGAREA parameter of
the RPL macro, VSAM returns the address of an RPL doing the erase when the return
code X'90' was set.

148(X'94') The maximum number of pointers in the alternate index has been exceeded.

152(X'98') Not enough buffers are available to process the application request (shared resources
only).

156(X'9C') Invalid control interval detected during keyed processing, an addressed GET UPD
request failed because control interval flag was on, or an invalid control interval or
index record was detected. The RPL contains the invalid control interval's RBA.

160(X'A0') One or more candidates were found that have a modified buffer marked to be written.
The buffer was left in write status with valid contents. With this condition, it is possible
to have other buffers invalidated or found under exclusive control.

168(X'A8') For MACRF=RLS, the pointer in the RPL to the record is zero.

180(X'B4') For MACRF=RLS, an invalid request for a nonrecoverable data set.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 183

Table 32. Logical-error reason codes in the feedback area of the request parameter list. Logical-error reason codes in the
feedback area of the request parameter list (continued)

Reason code (RPLERRCD) when
register 15=8(X'8') Meaning

184(X'B8') For MACRF=RLS, the application issued an ABEND condition while VSAM was
processing this request. The VSAM RLS FRR (Functional Recovery Routine) intercepted
the failure and failed the VSAM request with this reason code.

185(X'B9') For MACRF=RLS, the user task was cancelled while the request was being processed.

186(X'BA') For MACRF=RLS, an abend occurred in an attempt to access user storage during
logging. This might have happened if the application program issued FREEMAIN or
STORAGE RELEASE for the buffers.

187(X'BB') For MACRF=RLS, an error occurred with partial EOV processing.

188(X'BC') For MACRF=RLS, the sphere is in lost locks state. A record management request was
issued by this SUBSYSNM, but these requests are not allowed until the sphere is out of
lost locks state.

189(X'BD') For MACRF=RLS, a lock for the VSAM request required space in the record table, but
the table was full. Installation action is needed to modify the CFRM policy and rebuild
the lock structure.

190(X'BE') Partial EOV error.

192(X'C0') Invalid relative record number.

196(X'C4') The application issued an addressed request to a fixed-length or variable-length RRDS.

200(X'C8') The application attempted addressed or control interval access through a path.

204(X'CC') PUT insert requests (or for VSAM RLS or DFSMStvs, IDALKADD requests) are not
allowed in backward mode.

205(X'CD') For DFSMStvs, indicates that the request was unable to complete because DFSMStvs
restarted while the unit of recovery was inflight. To continue processing, the
application must issue a commit or a backout and then begin a new unit of recovery.
For LSF, indicates invalid CONTOKEN.

206(X'CE') For DFSMStvs, indicates that the request was rejected because the data set is
quiesced or quiescing for copy. Wait for the copy to complete and then retry the
request. For NSR, LSR, or GSR, this reason code indicates a validity check error for
shareoptions 3,4.

207(X'CF') Indicates that DFSMStvs processing is currently unavailable because DFSMStvs is
quiescing or disabling. Close all data sets to allow the quiesce/disable process to
complete.

208(X'D0') An ENDREQ was issued against an RPL that has an outstanding WAIT against its
associated ACB. No ENDREQ processing was done.

209(X'D1') For DFSMStvs, indicates that the forward recovery log is unavailable because it is
disabling. For LSR, indicates cache structure failure.

210(X'D2') For DFSMStvs, indicates that forward recovery logging failed because the record length
is greater than the installation-defined maximum for the log. For shared resources,
buffer being invalidated, buffer use chain changing, and so on.

211(X'D3') For DFSMStvs, this indicates that the forward recovery log is unusable for this system
as a result of either a failure by OPEN to complete connect processing to the
logstream, or an error occurred while writing to this logstream. See accompanying
DFSMStvs logger messages for appropriate action.

For LSR, the cache request is purged.

Return and Reason Codes

184 z/OS: z/OS DFSMStvs Administration Guide

Table 32. Logical-error reason codes in the feedback area of the request parameter list. Logical-error reason codes in the
feedback area of the request parameter list (continued)

Reason code (RPLERRCD) when
register 15=8(X'8') Meaning

212(X'D4') During control area split processing, an existing condition prevents the split of the
index record. Index or data control interval size, or both, might need to be increased.

213(X'D5') For DFSMStvs, indicates that the undo log is unavailable for processing. For LSR, no
connectivity to the cache structure.

214(X'D6') For DFSMStvs, indicates that a permanent I/O error was detected in the undo log. For
appropriate action, see accompanying DFSMStvs logger messages.

216(X'D8') For MACRF=RLS, LUWID specified in the RPL does not exist for the subsystem name
specified in the ACB.

217(X'D9') DFSMStvs is unable to complete the request because the resource recovery services
(RRS) instance failed and RRS has been restarted. To continue processing, the
application must issue a commit or a backout and then begin a new unit of recovery.

218(X'DA') Unrecognizable return code from SVC109.

220(X'DC') DFSMStvs was unable to complete the request because RRS is currently unavailable.

224(X'E0') MRKBFR OUT was issued for a buffer with invalid contents.

228(X'E4') Caller in cross-memory mode is not in supervisor state, or RPL of caller in SRB or
cross-memory mode does not specify LSR, GSR, or SYN processing. For MACRF=RLS,
the caller is not in primary ASC mode, the caller is in SRB mode, the caller issued a
record management request with an FRR in effect, or the task that opened the ACB is
not in the caller task hierarchy.

229(X'E5') The record length changed during decompression processing.

230(X'E6') The processing environment was changed by the user of the UPAD exit.

232(X'E8') UPAD error; ECB was not posted by the user in cross-memory mode.

235(X'EB') VSAM RLS or DFSMStvs internal error.

236(X'EC') Validity check error for SHAREOPTIONS 3 or 4.

237(X'ED') Reserved.

238(X'EE') Reserved.

239(X'EF') Reserved.

240(X'F0') For shared resources, one of the following is being performed: (1)an attempt is being
made to obtain a buffer in exclusive control, (2)a buffer is being invalidated, or (3)the
buffer use chain is changing. For more detailed feedback, reissue the request.

241(X'F1') Reserved.

242(X'F2') Reserved.

243(X'F3') Reserved.

244(X'F4') Register 14 stack size is not large enough.

245(X'F5') Severe error returned by compression management services during a compress call.
Additional problem determination is provided in the RPL message area.

246(X'F6') An error occurred during an expansion of the user record for an extended-function
data set. The RPL message area contains additional problem determination.

248(X'F8') Register 14 return offset went negative.

249(X'F9') For DFSMStvs, indicates that undo logging failed because the record length is greater
than the installation-defined maximum for the log. For LSR XI, invalid vector token.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 185

Table 32. Logical-error reason codes in the feedback area of the request parameter list. Logical-error reason codes in the
feedback area of the request parameter list (continued)

Reason code (RPLERRCD) when
register 15=8(X'8') Meaning

250(X'FA') No valid dictionary token exists for the data set. VSAM is unable to decompress the
data record.

252(X'FC') Record-mode processing is not allowed for a linear data set.

253(X'FD') VERIFY is not a valid function for a linear data set.

254(X'FD') I/O activity on the data set was not quiesced before WRTBFR TYPE=DS was issued.

When the search argument you supply for a POINT or GET request is greater than the highest key in the
data set, the reason code in the feedback area depends on the RPL's OPTCD values, as the following table
shows.

This tables shows how the reason code in the feedback area depends on the RPL's OPTCD values.

Request type RPLs OPTCD options
Reason code when register
15=8(X'8')

POINT GEN,KEQ 16(X'10')

POINT GEN,KGE 4(X'4')

POINT FKS,KEQ 16(X'10')

POINT FKS,KGE 4(X'4')

GET GEN,KEQ,DIR 16(X'10')

GET GEN,KGE,DIR 16(X'10')

GET FKS,KEQ,DIR 16(X'10')

GET FKS,KGE,DIR 16(X'10')

GET GEN,KEQ,SKP 16(X'10')

GET GEN,KGE,SKP 4(X'4')

GET FKS,KEQ,SKP 16(X'10')

GET FKS,KGE,SKP 4(X'4')

Positioning following logical errors

VSAM is unable to maintain positioning after every logical error. Whenever positioning is not maintained
following an error request, you must reestablish it before processing resumes.

Positioning can be in one of four states following a POINT or a direct request that found a logical error:
Yes

VSAM is positioned at the position in effect before the request in error was issued.
No

VSAM is not positioned, because no positioning was established at the time the request in error was
issued.

New
VSAM is positioned at a new position.

U
VSAM is positioned at an unpredictable position.

N/A
The reason code is not applicable to the type of processing indicated.

Return and Reason Codes

186 z/OS: z/OS DFSMStvs Administration Guide

Table 33 on page 187 shows which positioning state applies to each reason code listed for sequential,
direct, and skip-sequential processing. "N/A" indicates the reason code is not applicable to the type of
processing indicated.

Table 33. Positioning states for reason codes listed for sequential, direct, and skip-sequential processing. Positioning
states for reason codes listed for sequential, direct, and skip-sequential processing

Reason code (RPLERRCD)
when register 15=8(8) Sequential Direct Skip-sequential

4 (X'4') Yes No Yes

8 (X'8')“1” on page 189 Yes No New

12 (X'C') Yes N/A Yes

16 (X'10') No No No

20 (X'14') U No“2” on page 189 No“2” on page 189

21 (X'15') Yes“3” on page 189 New New

22 (X'16') Yes“3” on page 189 New New

24 (X'18') Yes“3” on page 189 No No

28 (X'1C') Yes No Yes

32 (X'20') No No N/A

36 (X'24') Yes No New

40 (X'28') Yes No No

44 (X'2C') Yes New Yes

48 (X'30') U U U

52 (X'34') U U U

56 (X'38') Yes Yes Yes

64 (X'40') No No No

68 (X'44') Yes Yes Yes

72 (X'48') Yes Yes Yes

76 (X'4C') Yes Yes Yes

80 (X'50') Yes Yes Yes

84 (X'54') Yes Yes Yes

88 (X'58') Yes Yes Yes

92 (X'5C') Yes Yes Yes

96 (X'60') Yes Yes Yes

100 (X'64') Yes Yes Yes

104 (X'68') Yes New Yes

108 (X'6C') Yes New Yes

112 (X'70') Yes Yes Yes

116 (X'74') Yes Yes Yes

120 (X'78') Yes No No

124 (X'7C') No No No

128 (X'80') Yes No No

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 187

Table 33. Positioning states for reason codes listed for sequential, direct, and skip-sequential processing. Positioning
states for reason codes listed for sequential, direct, and skip-sequential processing (continued)

Reason code (RPLERRCD)
when register 15=8(8) Sequential Direct Skip-sequential

132 (X'84') Yes New Yes

136 (X'88') No No N/A

140 (X'8C') Yes New Yes

144 (X'90') Yes Yes Yes

148 (X'94') Yes Yes Yes

152 (X'98') Yes No No

156 (X'9C') Yes No No

160 (X'A0') N/A No N/A

168 (X'A8') N/A N/A N/A

169 (X'A9') N/A N/A N/A

172 (X'AC') N/A N/A N/A

176 (X'B0') N/A N/A N/A

180 (X'B4') Yes Yes Yes

181 (X'B5') N/A N/A N/A

182 (X'B6') N/A N/A N/A

184 (X'B8') U U U

186 (X'BA') Yes Yes Yes

189 (X'BD') Yes New New

190 (X'BE') Yes“3” on page 189 No Yes

192 (X'C0') Yes Yes Yes

196 (X'C4') Yes Yes Yes

200 (X'C8') Yes Yes Yes

201 (X'C9') N/A N/A N/A

204 (X'CC') Yes Yes Yes

205 (X'CD') U U U

206 (X'CE') Yes Yes Yes

208 (X'D0') Yes Yes Yes

209 (X'D1') U U U

210 (X'D2') Yes Yes Yes

211 (X'D3') No No No

212 (X'D4') U U U

213 (X'D5') U U U

216 (X'D8') N/A N/A N/A

217 (X'D9') Yes Yes Yes

224 (X'E0') N/A No N/A

Return and Reason Codes

188 z/OS: z/OS DFSMStvs Administration Guide

Table 33. Positioning states for reason codes listed for sequential, direct, and skip-sequential processing. Positioning
states for reason codes listed for sequential, direct, and skip-sequential processing (continued)

Reason code (RPLERRCD)
when register 15=8(8) Sequential Direct Skip-sequential

228 (X'E4') No No No

229 (X'E5') New New New

230 (X'E6') Yes Yes Yes

232 (X'E8') No No No

235 (X'EB') U U U

236 (X'EC') Yes Yes Yes

237 (X'ED') U U U

238 (X'EE') U U U

239 (X'EF') U U U

240 (X'F0') Yes Yes Yes

241 (X'F1') No No No

242 (X'F2') U U U

243 (X'F3') No No No

244 (X'F4') U U U

245 (X'F5') New New New

246 (X'F6') New New New

248 (X'F8') U U U

249 (X'F9') Yes Yes Yes

250 (X'FA') New New New

251 (X'FB') U U U

252 (X'FC') No No No

253 (X'FD') No No No

Notes:

1. A subsequent GET SEQ will retrieve the duplicate record. However, a subsequent GET SKP for the same key will
get a sequence error. In a fixed- or variable-length RRDS, a subsequent PUT SEQ positions to the next slot
(whether the slot is empty or not).

2. PUT UPD, DIR or UPD, SKP retains positioning. The RPL contains an RBA that could not be obtained for exclusive
control.

3. For MACRF=RLS, position will advance to next record on next request.

Reason code (physical errors)

If a physical error occurs and you have no SYNAD routine (or the SYNAD exit is inactive), VSAM returns
control to your program following the last executed instruction. The return code in register 15 indicates a
physical error (12). The RPL feedback area contains a reason code identifying the error. The RPL message
area contains more details about the error. Register 1 points to the request parameter list. The RBA field
in the request parameter list gives the relative byte address of the control interval in which the physical
error occurred. Table 34 on page 190 lists the reason codes that can be in the feedback area and explains
what each code indicates.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 189

Table 34. Physical-error reason codes in the feedback area of the request parameter list. Physical-error reason codes
in the feedback area of the request parameter list

Reason code (RPLERRCD)
when register 15=12(X'0C') Meaning

4(X'4') Read error occurred for a data set.

8(X'8') Read error occurred for an index set.

12(X'C') Read error occurred for a sequence set.

16(X'10') Write error occurred for a data set.

20(X'14') Write error occurred for an index set.

24(X'18') Write error occurred for a sequence set.

36(X'24') For MACRF=RLS, a CF cache structure connectivity failure occurred.

40(X'28') For MACRF=RLS, a CF cache structure failure occurred.

44(X'2C') For extended format data sets, the suffix for a physical record in the CI at the
RBA specified in the RPL is invalid.

Table 35 on page 190 shows the format of a physical error message. The format and some of the contents
of the message are purposely similar to the format and contents of the SYNADAF message, which z/OS
DFSMS Macro Instructions for Data Sets describes.

Table 35. Physical error message format for non-RLS processing. Physical error message format for non-RLS processing

Field Bytes Length Description

Message Length 0-1 2 Binary value of 128.

2-3 2 Unused (0)

Message Length-4 4-5 2 Binary value of 124 (provided for compatibility with
SYNADAF Message).

6-7 2 Unused (0)

Address of I/O Buffer 8-11 4 The I/O buffer associated with the data where the error
occurred.

The rest of the message is in
printable format

Date 12-16 5 YYDDD (year and day)

17 1 Comma (,)

Time 18-25 8 HHMMSSTH (hour, minute, second, tenths and hundredths
of a second.

26 1 Comma (,)

RBA 27-38 12 Relative byte address of the record where the error
occurred.

39 1 Comma (,)

Component Type 40 1 "D"(Data) or "I"(Index)

41 1 Comma (,)

Volume Serial Number 42-47 6 Volume serial number of the volume where the error
occurred.

For UNIX files, this field contains "********".

48 1 Comma (,)

Job Name 49-56 8 Name of the job where the error occurred.

Return and Reason Codes

190 z/OS: z/OS DFSMStvs Administration Guide

Table 35. Physical error message format for non-RLS processing. Physical error message format for non-RLS processing
(continued)

Field Bytes Length Description

57 1 Comma (,)

Step Name 58-65 8 Name of the job step where the error occurred.

66 1 Comma (,)

Unit 67-70 4 The device number where the error occurred.

For UNIX files, this field contains "****".

71 1 Comma (,)

Device Type 72-73 2 The type of device where the error occurred. (Always DA
for direct access.)

74 1 Comma (,)

ddname 75-82 8 The ddname of the DD statement defining the data set
where the error occurred.

83 1 Comma (,)

Channel 84-89 6 The channel command that received the error in the first
two bytes, followed by “-OP”

For UNIX files, this field contains the request that resulted
in the error.

A GET, PUT, CHECK, POINT, or ENDREQ request.

Figure 6 on page 192 shows information about messages 91–105.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 191

Message 91-105 15 Messages are divided according to ECB completion codes:

 X'41' "INCORR LENGTH"
 "UNIT EXCEPTION"
 "PROGRAM CHECK"
 "PROTECTION CHK"
 "CHAN DATA CHK"
 "CHAN CTRL CHK"
 "INTFCE CTRL CHK"
 "CHAINING CHK"
 "UNIT CHECK"
 "SEEK CHECK"

If the type of unit check can be determined, the "UNIT CHECK" message is replaced by one of the
following messages:

 "CMD REJECT"
 "INT REQ"
 "BUS OUT CK"
 "EQP CHECK"
 "DATA CHECK"
 "OVER RUN"
 "TRACK COND CK"
 "COUNT DATA CHK"
 "TRACK FORMAT"
 "CYLINDER END"
 "NO RECORD FOUND"
 "FILE PROTECT"
 "MISSING A.M."
 "OVERFL INCP"
 X'48' "PURGED REQUEST"
 X'4A' "I/O PREVENTED"
 X'4F' "R.HA.R0. ERROR"
 "INVALID SUFFIX"

Figure 6. Physical error message format

Table 36 on page 192 shows information about messages 106–127.

Table 36. Physical error message format. This table shows information about messages 106–127.

Field Bytes Length Description

For any other ECB
completion code:

"UNKNOWN COND".

For UNIX files, this field contains the service that
encountered the error, in the form "OMVS-nnnnnnnn", in
which nnnnnnnn is the name of the service.

106 1 Comma (,)

Physical Direct 107-120 14 BBCCHHR (bin, cylinder, head, and record)

Access Address For UNIX files, this field contains the return and reason
code from the failing service in the form "xxxx-yyyyyyyy"
consisting of a 2-byte hexadecimal return code and a 4-
byte hexadecimal reason code.

121 1 Comma (,)

Access Method 122-127 6 "VSAM"

Return and Reason Codes

192 z/OS: z/OS DFSMStvs Administration Guide

Table 36. Physical error message format. This table shows information about messages 106–127. (continued)

Field Bytes Length Description

For UNIX files, this field contains "VSAM"

Message format for CF
failure with VSAM RLS OR
DFSMStvs processing

Field Bytes Length Description

Message Length 0-1 2 Binary value of 128

2-3 2 Unused (0)

Message Length-4 4-5 2 Binary value of 124 (provided for compatibility with
SYNADAF Message).

6-7 2 Unused (0)

Address of I/O Buffer 8-11 4 The I/O buffer associated with the data where the error
occurred.

The rest of the message is
in printable format:

Date 12-16 5 YYDDD (year and day)

17 1 Comma (,)

Time 18-25 8 HHMMSSTH (hour, minute, second, tenths and
hundredths of a second.

26 1 Comma (,)

RBA 27-38 12 Relative byte address of the record where the error
occurred.

39 1 Comma (,)

Component Type 40 1 "D"(Data) or "I"(Index)

41 1 Comma (,)

Volume Serial 42-47 6 For MACRF=RLS, this field does not apply and is set to
asterisks.

48 1 Comma (,)

Job Name 49-56 8 Name of the job where the error occurred.

57 1 Comma (,)

Step Name 58-65 8 Name of the job step where the error occurred.

66 1 Comma (,)

Unit 67-70 4 For MACRF=RLS, this field does not apply and is set to
asterisks.

71 1 Comma (,)

Device Type 72-73 2 For MACRF=RLS, this field is set to "CS" for CF cache
structure.

74 1 Comma (,)

ddname 75-82 8 The ddname of the DD statement defining the data set
where the error occurred.

83 1 Comma (,)

Channel 84-89 6 For MACRF=RLS, this field is set to "CFREAD" or
"CFWRT" indicating if the CF operation is a read or write.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 193

Table 36. Physical error message format. This table shows information about messages 106–127. (continued)

Field Bytes Length Description

90 1 Comma (,)

Message 91-105 15 For MACRF=RLS, you receive either CF structure failure
message or loss of connectivity message.

&tab;"CF STR FAILURE"

&tab;"CF CON FAILURE"

106 1 Comma (,)

Physical Direct Access
Address

107-120 14 14-character cache structure name.

121 1 Comma (,)

Access Method 122-127 6 "VSAM"

Reason code (server errors)

If a server failure occurs in the SMSVSAM address space for VSAM RLS or DFSMStvs, the return code in
register 15 indicates a server error (16). The RPL feedback area contains a reason code identifying the
type of server failure. Table 37 on page 194 lists the reason codes that can be in the feedback area and
explains the associated failures.

Table 37. Server failure reason codes in the feedback area of the request parameter list. Server failure
reason codes in the feedback area of the request parameter list

Return code (RPLERRCD) when register
15=16(X'10') Meaning

4(X'4') VSAM server address space is detected to be
inactive, uninitialized, or at a different server
instance.

8(X'8') Server is terminating; CF connection is lost.

12(X'C') DFSMStvs processing is unavailable, either
because DFSMStvs did not initialize or because it is
is disabled or quiesced.

16(X'10') DFSMStvs processing is unavailable because RRS
is down.

Return codes from macros used to share resources among data sets
VSAM has a set of macros that allow you to share I/O buffers, I/O related control blocks, and channel
programs among VSAM data sets.

BLDVRP return codes

VSAM returns a code in register 15 that indicates if the BLDVRP request was successful. Table 38 on page
194 describes these return codes.

Table 38. Return codes in register 15 after BLDVRP request. Return codes in register 15 after BLDVRP request

Return code Meaning

0(X'0') VSAM completed the request.

4(X'4') The requested data resource pool or index resource pool already exists in the address space (LSR) or
in the system protect key (GSR).

8(X'8') Insufficient virtual storage space to satisfy request. GETMAIN or ESTAE failed.

Return and Reason Codes

194 z/OS: z/OS DFSMStvs Administration Guide

Table 38. Return codes in register 15 after BLDVRP request. Return codes in register 15 after BLDVRP request (continued)

Return code Meaning

12(X'C') Opens have already been issued against the shared buffer pool that BLDVRP is building.

Rule: As a VSAM user, you are responsible for ensuring that the BLDVRP/DLVRP requests are
serialized with the open or close requests. VSAM cannot completely detect the lack of such
serialization.

16(X'10') TYPE=GSR is specified but the program that issued BLDVRP is not in supervisor state with protection
key 0 to 7.

20(X'14') STRNO is less than 1 or greater than 255, or parameters are invalid.

24(X'18') BUFFERS is specified incorrectly. A size or number is invalid.

32(X'20') The resource pool already exists above 16 megabytes and the request was for storage below 16
megabytes. Or, the resource pool already exists below 16 megabytes and the request was for storage
above 16 megabytes.

36(X'24') BLDVRP was issued to build an index resource pool but the required corresponding data resource pool
does not exist.

40(X'28') The size for Hiperspace™ buffers is specified incorrectly. The buffer size must be a multiple of 4K with
a maximum size of 32K.

44(X'2C') Attention: At least one request for Hiperspace buffers was rejected because of insufficient expanded
storage. The specific buffer subpools rejected may be located by checking for the BLPBFNHS indicator
in the Hiperspace buffer request list. The BLDVRP request was otherwise successful.

This return code is also valid for jobs indicating RESTART processing.

45(X'2D') Attention: All Hiperspace™ creates have failed because no expanded storage was installed on the
system. BLDVRP processing continued as if no hiperspace buffers were requested. The BLDVRP
request was otherwise successful.

This return code is also valid for jobs indicating RESTART processing.

48(X'30') A buffer size specified for a Hiperspace buffer pool is not equal to any of the buffer sizes specified for
the virtual buffer pool.

52(X'34') Another BLDVRP or DLVRP on the same shared pool is in progress.

DLVRP return codes

VSAM returns a code in register 15 that indicates if the DLVRP request was successful. Table 39 on page
195 describes these return codes.

Table 39. Return codes in register 15 after a DLVRP request. Return codes in register 15 after a DLVRP request

Return code Meaning

0(X'0') VSAM completed the request.

4(X'4') There is no resource pool to delete.

8(X'8') Insufficient virtual storage space to satisfy request. GETMAIN or ESTAE failed.

12(X'C') There is at least one open data set using the resource pool.

16(X'10') TYPE=GSR is specified, but the program that issued DLVRP is not in supervisor state with protection
key 0 to 7.

20(X'14') Another BLDVRP or DLVRP on the same shared pool is in progress.

End-of-volume return codes
End-of-volume returns a code in register 15 that indicates if the request was successful. Table 40 on page
196 describes these return codes.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 195

Table 40. Return codes in register 15 after end of volume. Return codes in register 15 after end of volume

Return code Meaning

0(X'0') Successful.

4(X'4') The requested volume could not be mounted.

8(X'8') The requested amount of space could not be allocated.

12(X'C') I/O operations were in progress when end-of-volume was requested.

16(X'10') The catalog could not be updated.

SHOWCAT return codes
VSAM returns a code in register 15 that indicates whether the SHOWCAT request was successful. Table
41 on page 196 describes these return codes.

Table 41. SHOWCAT return codes. SHOWCAT return codes

Return code Meaning

0(X'00') VSAM completed the task.

4(X'04') The area specified in the AREA operand is too small to display all pairs of fields for the associated
objects.

8(X'08') There is insufficient virtual storage to complete the task. (A GETMAIN failed.)

12(X'0C') Either the ACB address is invalid, or the VSAM master catalog does not exist, or it is not open.

16(X'10') The address specified in the AREA operand is outside the partition or address space of the program
that issued SHOWCAT.

20(X'14') The named object or control interval does not exist.

24(X'18') There was an I/O error in gaining access to the catalog.

28(X'1C') The control interval number is invalid.

32(X'20') The catalog record does not describe a C, D, G, I, R, or Y type of object.

36(X'24') The interrelationship among catalog entries is in error. For example, another type.

40(X'28') There was an unexpected error code returned from catalog management to the SHOWCAT processor.

Coding VSAM user-written exit routines
This topic covers general guidelines for coding VSAM user-written exit routines and specific information
about coding the following routines.

Table of contents

User-written exit routine

“EODAD exit routine to process end of data” on page 200

“EXCEPTIONEXIT exit routine” on page 201

“JRNAD exit routine to journalize transactions” on page 202

“LERAD exit routine to analyze logical errors” on page 209

“RLSWAIT exit routine” on page 210

“SYNAD exit routine to analyze physical errors” on page 211

“UPAD exit routine for user processing” on page 213

Return and Reason Codes

196 z/OS: z/OS DFSMStvs Administration Guide

Table of contents (continued)

User-written exit routine

“User-security-verification routine” on page 215

General guidelines for coding exit routines
You can supply VSAM exit routines to do the following tasks:

• Analyze logical errors
• Analyze physical errors
• Perform end-of-data processing
• Record transactions made against a data set
• Perform special user processing
• Perform wait user processing
• Perform user-security verification.

VSAM user-written exit routines are identified by macro parameters in access methods services
commands.

You can use the EXLST VSAM macro to create an exit list. EXLST parameters EODAD, JRNAD, LERAD,
SYNAD and UPAD are used to specify the addresses of your user-written routines. Only the exits marked
active are executed. For information about the EXLST macro, see z/OS DFSMS Macro Instructions for Data
Sets.

You can use access methods services commands to specify the addresses of user-written routines to
perform exception processing and user-security verification processing. For information about exits from
access methods services commands, see z/OS DFSMS Access Method Services Commands.

Table 42 on page 197 shows the exit locations available from VSAM.

Table 42. VSAM user-written exit routines. This table shows the exit locations available from VSAM.

Exit routine When available Where specified

Batch override After you issue an IDCAMS SHCDS
PERMITNONRLSUPDATE command
while there was back out work owed

IGW8PNRU exit in LINKLIB or LPALIB

End-of-data-set When no more sequential records or
blocks are available

EODAD parameter of the EXLST macro

Exception exit After an uncorrectable input/output
error

EXCEPTIONEXIT parameter in access
methods services commands

Journalize transactions against a data
set

After an input/output completion or
error, change to buffer contents, shared
or nonshared request, program issues
GET, PUT, ERASE, shift in data in a
control interval

JRNAD parameter of the EXLST macro

Analyze logical errors After an uncorrectable logical error LERAD parameter of the EXLST macro

Wait For non-cross-memory mode callers
using RLS

RLSWAIT parameter of the EXLST
macro

Error analysis After an uncorrectable input/output
error

SYNAD parameter of the EXLST macro

User processing WAIT for I/O completion or for a serially
reusable request

UPAD parameter of the EXLST macro

User security verification When opening a VSAM data set AUTHORIZATION parameter in access
methods services commands

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 197

Programming guidelines
Usually, you should observe these guidelines in coding a routine:

• Code your routine reentrant
• Save and restore registers (see individual routines for other requirements)
• Be aware of registers used by the VSAM request macros
• Be aware of the addressing mode (24 bit or 31 bit) in which your exit routine will receive control
• Determine if VSAM or your program should load the exit routine.

Information

When you code VSAM user exit routines, you should have available z/OS DFSMS Macro Instructions for
Data Sets and z/OS DFSMS Access Method Services Commands and be familiar with their contents.

A user exit that is loaded by VSAM will be invoked in the addressing mode specified when the module was
link edited. A user exit that is not loaded by VSAM will receive control in the same addressing mode as the
issuer of the VSAM record-management, OPEN, or CLOSE request that causes the exit to be taken. It is
the user's responsibility to ensure that the exit is written for the correct addressing mode.

Your exit routine can be loaded within your program or by using JOBLIB or STEPLIB with the DD
statement to point to the library location of your exit routine.

Multiple request parameter lists or data sets

If the exit routine is used by a program that is doing asynchronous processing with multiple request
parameter lists (RPL) or if the exit routine is used by more than one data set, you must code the exit
routine so that it can handle an entry made before the previous entry's processing is completed. Saving
and restoring registers in the exit routine, or by other routines called by the exit routine, is best
accomplished by coding the exit routine reentrant. Another way of doing this is to develop a technique for
associating a unique save area with each RPL.

If the LERAD, EODAD, or SYNAD exit routine reuses the RPL passed to it, you should be aware of these :

• The exit routine is called again if the request issuing the reused RPL results in the same exception
condition that caused the exit routine to be entered originally.

• The original feedback code is replaced with the feedback code that indicates the status of the latest
request issued against the RPL. If the exit routine returns to VSAM, VSAM (when it returns to the user's
program) sets register 15 to also indicate the status of the latest request.

• JRNAD, UPAD, and exception exits are extensions of VSAM and, therefore, must return to VSAM in the
same processing mode in which they were entered (that is, cross-memory, SRB, or task mode).

Return to a main program

Six exit routines can be entered when your main program issues a VSAM request macro (GET, PUT,
POINT, and ERASE) and the macro has not completed: LERAD, SYNAD, EODAD, UPAD, RLSWAIT or the
EXCEPTIONEXIT routine. Entering the LERAD, SYNAD, EODAD, or EXCEPTIONEXIT indicates that the
macro failed to complete successfully. When your exit routine completes its processing, it can return to
your main program in one of two ways:

• The exit routine can return to VSAM (via the return address in register 14); VSAM then returns to your
program at the instruction following the VSAM request macro that failed to complete successfully. This
is the easier way to return to your program.

If your error recovery and correction process needs to reissue the failing VSAM macro against the RPL
to retry the failing request or to correct it:

– Your exit routine can correct the RPL (using MODCB), then set a switch to indicate to your main
program that the RPL is now ready to retry. When your exit routine completes processing, it can
return to VSAM (via register 14), which returns to your main program. Your main program can then
test the switch and reissue the VSAM macro and RPL.

Return and Reason Codes

198 z/OS: z/OS DFSMStvs Administration Guide

– Your exit routine can issue a GENCB macro to build an RPL, and then copy the RPL (for the failing
VSAM macro) into the newly built RPL. At this point, your exit routine can issue VSAM macros against
the newly built RPL. When your exit routine completes processing, it can return to VSAM (via register
14), which returns to your main program.

• The exit routine can determine the appropriate return point in your program, then branch directly to that
point. Note that when VSAM enters your exit routine, none of the registers contains the address of the
instruction following the failing macro.

You are required to use this method to return to your program if, during the error recovery and
correction process, your exit routine issued a GET, PUT, POINT, or ERASE macro that refers to the RPL
referred to by the failing VSAM macro. (That is, the RPL has been reissued by the exit routine.) In this
case, VSAM has lost track of its reentry point to your main program. If the exit routine returns to VSAM,
VSAM issues an error return code.

IGW8PNRU routine for batch override
To prevent damage to a data set, DFSMStvs defers the decision whether to back out a specific record to
an installation exit, the batch override exit. This is an optional exit that Transaction VSAM calls when it
backs out a unit of recovery (UR) that involves a data set that might have been impacted by the IDCAMS
SHCDS PERMITNONRLSUPDATE command. The exit is called once for each affected undo log record for
the data set.

The purpose of this exit is to return to DFSMStvs with an indication of whether or not the backout should
be applied. The input is an undo log record (mapped by IGWUNLR) and a data set name. The output is a
Boolean response of whether or not to do the backout, returned in register 15:

• 0 (zero) means do not back out this record.
• 4 means back out this record.

The exit is given control in the following environment:

• INTERRUPTS enabled
• STATE and KEY problem program state, key 8
• ASC Mode P=H=S, RLS address space
• AMODE, RMODE: No restrictions
• LOCKS: None held
• The exit is reentrant

Register contents

Table 43 on page 199 gives the contents of the registers when VSAM exits to the IGW8PNRU routine.

Table 43. Contents of registers at entry to IGW8PNRU exit routine. Contents of registers at entry to IGW8PNRU exit
routine

Register Contents

0 Not applicable.

1 Address of IGWUNLR (in key 8 storage).

Address of an area to be used as an autodata area (in key 8 storage).

3 Length of the autodata area.

4-13 Unpredictable. Register 13, by convention, contains the address of your processing program's
72-byte save area, which must not be used as a save area by the IGW8PNRU routine if it returns
control to VSAM.

14 Return address to VSAM.

15 Entry address to the IGW8PNRU routine.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 199

Programming considerations

The following programming considerations apply to the batch override exit:

• The name of this exit must be IGW8PNRU.
• The exit must be loadable from any system that might do peer recovery for another system.
• The IGW8PNRU module is loaded by DFSMStvs and, therefore, must reside in LINKLIB or LPALIB. If the

load fails, DFSMStvs issues a message.
• If it does not find the batch override exit, DFSMStvs shunts any UR with a pending backout for a data set

that was accessed through PERMITNONRLSUPDATE.
• If your installation needs to fix a code error or enhance the function of the exit, you need to restart

DFSMStvs to enable the new exit.
• The exit can issue SVC instructions.

DFSMStvs establishes an ESTAE recovery environment before calling the exit to protect the RLS address
space from failures in the exit. If the exit fails or an attempt to invoke it fails, the UR is shunted. A dump is
taken, and the exit is disabled until the next DFSMStvs restart, but the server is not recycled. If the exit
abended, it might result in a dump with a title like this:

DUMP TITLE=COMPID=?????,CSECT=????????+FFFF,DATE=????????,MAINT
 ID=????????,ABND=0C4,RC=00000000,RSN=00000004

If this happens, investigate why the exit abended.

Recommendation: It is possible for this exit to perform other processing, but IBM strongly recommends
that the exit not attempt to update any recoverable resources.

When your IGW8PNRU routine completes processing, return to your main program as described in
“Return to a main program” on page 198.

EODAD exit routine to process end of data
VSAM exits to an EODAD routine when an attempt is made to sequentially retrieve or point to a record
beyond the last record in the data set (one with the highest key for keyed access and the one with the
highest RBA for addressed access). VSAM doesn't take the exit for direct requests that specify a record
beyond the end. If the EODAD exit isn't used, the condition is considered a logical error (FDBK code X'04')
and can be handled by the LERAD routine, if one is supplied. See “LERAD exit routine to analyze logical
errors” on page 209.

Register contents

Table 44 on page 200 gives the contents of the registers when VSAM exits to the EODAD routine.

Table 44. Contents of registers at entry to EODAD exit routine. Contents of registers at entry to EODAD exit routine

Register Contents

0 Unpredictable.

1 Address of the RPL that defines the request that occasioned VSAM's reaching the end of the
data set. The register must contain this address if you return to VSAM.

2-13 Unpredictable. Register 13, by convention, contains the address of your processing program's
72-byte save area, which must not be used as a save area by the EODAD routine if it returns
control to VSAM.

14 Return address to VSAM.

15 Entry address to the EODAD routine.

Programming considerations

The typical actions of an EODAD routine are to:

• Examine RPL for information you need, for example, type of data set

Return and Reason Codes

200 z/OS: z/OS DFSMStvs Administration Guide

• Issue completion messages
• Close the data set
• Terminate processing without returning to VSAM.

If the routine returns to VSAM and another GET request is issued for access to the data set, VSAM exits to
the LERAD routine.

If a processing program retrieves records sequentially with a request defined by a chain of RPLs, the
EODAD routine must determine whether the end of the data set was reached for the first RPL in the chain.
If not, then one or more records have been retrieved but not yet processed by the processing program.

The type of data set whose end was reached can be determined by examining the RPL for the address of
the access method control block that connects the program to the data set and testing its attribute
characteristics.

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and returns to VSAM, it must provide a
save area and restore registers 13 and 14, which are used by these macros.

When your EODAD routine completes processing, return to your main program as described in “Return to
a main program” on page 198.

EXCEPTIONEXIT exit routine
You can provide an exception exit routine to monitor I/O errors associated with a data set. You specify the
name of your routine via the access method services DEFINE command using the EXCEPTIONEXIT
parameter to specify the name of your user-written exit routine.

Register contents

Table 45 on page 201 gives the contents of the registers when VSAM exits to the EXCEPTIONEXIT
routine.

Table 45. Contents of registers at entry to EXCEPTIONEXIT routine. Contents of registers at entry to EXCEPTIONEXIT
routine

Register Contents

0 Unpredictable.

1 Address of the RPL that contains a feedback return code and the address of a message area, if
any.

2-13 Unpredictable. Register 13, by convention, contains the address of your processing program's
72-byte save area, which must not be used by the routine if it returns control to VSAM.

14 Return address to VSAM.

15 Entry address to the exception exit routine.

Programming considerations

The exception exit is taken for the same errors as a SYNAD exit. If you have both an active SYNAD routine
and an EXCEPTIONEXIT routine, the exception exit routine is processed first.

The exception exit is associated with the attributes of the data set (specified by the DEFINE) and is loaded
on every call. Your exit must reside in the LINKLIB and the exit cannot be called when VSAM is in cross-
memory mode.

When your exception exit routine completes processing, return to your main program as described in
“Return to a main program” on page 198.

For information about how exception exits are established, changed, or nullified, see z/OS DFSMS Access
Method Services Commands.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 201

JRNAD exit routine to journalize transactions
A JRNAD exit routine can be provided to record transactions against a data set, to keep track of changes
in the RBAs of records, and to monitor control interval splits. It is only available for VSAM shared resource
buffering. When using the JRNAD exit routine with compressed data sets, all RBA's and data length values
returned represent compressed data. For shared resources, you can use a JRNAD exit routine to deny a
request for a control interval split. VSAM takes the JRNAD exit each time one of the following occurs:

• The processing program issues a GET, PUT, or ERASE
• Data is shifted right or left in a control interval or is moved to another control interval to accommodate a

record's being deleted, inserted, shortened, or lengthened
• An I/O error occurs
• An I/O completion occurs
• A shared or nonshared request is received
• The buffer contents are to be changed.

Restriction: The JRNAD exit is not supported by RLS.

Register contents

Table 46 on page 202 gives the contents of the registers when VSAM exits to the JRNAD routine.

Table 46. Contents of registers at entry to JRNAD exit routine. Contents of registers at entry to JRNAD exit routine

Register Contents

0 Byte 0—the subpool-id token created by a BLDVRP request. Bytes 2 - 3—the relative buffer
number, that is, the buffer array index within a buffer pool.

1 Address of a parameter list built by VSAM.

2-3 Unpredictable.

4 Address of buffer control block (BUFC).

5-13 Unpredictable.

14 Return address to VSAM.

15 Entry address to the JRNAD routine.

Programming considerations

If the JRNAD is taken for I/O errors, a journal exit can zero out, or otherwise alter, the physical-error
return code, so that a series of operations can continue to completion, even though one or more of the
operations failed.

The contents of the parameter list built by VSAM, pointed to by register 1, can be examined by the JRNAD
exit routine, which is described in Table 47 on page 204.

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB, it must restore register 14, which is used
by these macros, before it returns to VSAM.

If the exit routine uses register 1, it must restore it with the parameter list address before returning to
VSAM. (The routine must return for completion of the request that caused VSAM to exit.)

The JRNAD exit must be indicated as active before the data set for which the exit is to be used is opened,
and the exit must not be made inactive during processing. If you define more than one access method
control block for a data set and want to have a JRNAD routine, the first ACB you open for the data set
must specify the exit list that identifies the routine.

When the data set being processed is extended addressable, the JRNAD exits dealing with RBAs are not
taken or are restricted due to the increase in the size of the field required to provide addressability to
RBAs which may be greater than 4 GB. The restrictions are for the entire data set without regard to the
specific RBA value.

Return and Reason Codes

202 z/OS: z/OS DFSMStvs Administration Guide

Journalizing transactions

For journalizing transactions (when VSAM exits because of a GET, PUT, or ERASE), you can use the
SHOWCB macro to display information in the request parameter list about the record that was retrieved,
stored, or deleted (FIELDS=(AREA,KEYLEN,RBA,RECLEN), for example). You can also use the TESTCB
macro to find out whether a GET or a PUT was for update (OPTCD=UPD).

If your JRNAD routine only journals transactions, it should ignore reason X'0C' and return to VSAM;
conversely, it should ignore reasons X'00', X'04', and X'08' if it records only RBA changes.

RBA changes

For recording RBA changes, you must calculate how many records there are in the data being shifted or
moved, so you can keep track of the new RBA for each. If all the records are the same length, you
calculate the number by dividing the record length into the number of bytes of data being shifted. If
record length varies, you can calculate the number by using a table that not only identifies the records (by
associating a record's key with its RBA), but also gives their length.

You should provide a routine to keep track of RBA changes caused by control interval and control area
splits. RBA changes that occur through keyed access to a key-sequenced data set must also be recorded
if you intend to process the data set later by direct-addressed access.

Control interval splits

Some control interval splits involve data being moved to two new control intervals, and control area splits
normally involve many control intervals' contents being moved. In these cases, VSAM exits to the JRNAD
routine for each separate movement of data to a new control interval.

You might also want to use the JRNAD exit to maintain shared or exclusive control over certain data or
index control intervals; and in some cases, in your exit routine you can reject the request for certain
processing of the control intervals. For example, if you used this exit to maintain information about a data
set in a shared environment, you might reject a request for a control interval or control area split because
the split might adversely affect other users of the data set.

The following example is a skeleton program USERPROG with a user exit routine USEREXIT. It
demonstrates the use of the JRNAD exit routine to cancel a request for a control interval or control area
split.

USERPROG CSECT
 SAVE(R14,R12) Standard entry code
 .
 .
 .
 BLDVRP BUFFERS=(512(3)), Build resource pool X
 KEYLEN=4, X
 STRNO=4, X
 TYPE=LSR, X
 SHRPOOL=1, X
 RMODE31=ALL
 OPEN (DIRACB) Logically connect KSDS1
 .
 .
 .
 PUT RPL=DIRRPL This PUT causes the exit routine USEREXIT
 to be taken with an exit code X'50' if
 there is a CI or CA split
 LTR R15,R15 Check return code from PUT
 BZ NOCANCEL Retcode = 0 if USEREXIT did not cancel
 CI/CA split
 = 8 if cancel was issued, if
 we know a CI or CA split
 occurred
 .
 . Process the cancel situation
 .
NOCANCEL . Process the noncancel situation
 .
 .
 CLOSE (DIRACB) Disconnect KSDS1
 DLVRP TYPE=LSR,SHRPOOL=1 Delete the resource pool
 .

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 203

 .
 .
 RETURN Return to caller.
 .
 .
 .
DIRACB ACB AM=VSAM, X
 DDNAME=KSDS1, X
 BUFND=3, X
 BUFNI=2, X
 MACRF=(KEY,DDN,SEQ,DIR,OUT,LSR), X
 SHRPOOL=1, X
 EXLST=EXITLST

*
DIRRPL RPL AM=VSAM, X
 ACB=DIRACB, X
 AREA=DATAREC, X
 AREALEN=128, X
 ARG=KEYNO, X
 KEYLEN=4, X
 OPTCD=(KEY,DIR,FWD,SYN,NUP,WAITX), X
 RECLEN=128
*
DATAREC DC CL128'DATA RECORD TO BE PUT TO KSDS1'
KEYNO DC F'0' Search key argument for RPL
EXITLST EXLST AM=VSAM,JRNAD=(JRNADDR,A,L)
JRNADDR DC CL8'USEREXIT' Name of user exit routine
 END End of USERPROG

USEREXIT CSECT On entry to this exit routine, R1 points
 to the JRNAD parameter list and R14 points
 back to VSAM.
 .
 . Nonstandard entry code -- need not save
 . the registers at caller's save area and,
 . since user exit routines are reentrant for
 . most applications, save R1 and R14 at some
 . registers only if R1 and R14 are to be
 . destroyed
 .
 CLI 20(R1),X'50' USEREXIT called because of CI/CA split?
 BNE EXIT No. Return to VSAM
 MVI 21(R1),X'8C' Tell VSAM that user wants to cancel split
 .
 .
 .
EXIT . Nonstandard exit code -- restore R1 and
 . R14 from save registers
 BR R14 Return to VSAM which returns to USERPROG
 if cancel is specified
 END End of USEREXIT

Parameter list

The parameter list built by VSAM contains reason codes to indicate why the exit was taken, and also
locations where you can specify return codes for VSAM to take or not take an action on returning from
your routine. The information provided in the parameter list varies depending on the reason the exit was
taken. Table 47 on page 204 shows the contents of the parameter list.

The parameter list will reside in the same area as the VSAM control blocks, either above or below the 16
MB line. For example, if the VSAM data set was opened and the ACB stated RMODE31=CB, the exit
parameter list will reside above the 16 MB line. To access a parameter list that resides above the 16 MB
line, you will need to use 31-bit addressing.

Table 47. Contents of parameter list built by VSAM for the JRNAD exit. Contents of parameter list built by VSAM for the
JRNAD exit

Offset Bytes Description

0(X'0') 4 Address of the RPL that defines the request that caused VSAM to exit to the routine.

Return and Reason Codes

204 z/OS: z/OS DFSMStvs Administration Guide

Table 47. Contents of parameter list built by VSAM for the JRNAD exit. Contents of parameter list built by VSAM for the
JRNAD exit (continued)

Offset Bytes Description

4(X'4') 4 Address of a 5-byte field that identifies the data set being processed. This field has the format:

4 bytes
Address of the access method control block specified by the RPL that defines the request
occasioned by the JRNAD exit.

1 byte
Indication of whether the data set is the data (X'01') or the index (X'02') component.

8(X'8') 4 Variable, depends on the reason indicator at offset 20:

Offset 20
Contents at offset 8

X'0C'
The RBA of the first byte of data that is being shifted or moved.

X'20'
The RBA of the beginning of the control area about to be split.

X'24'
The address of the I/O buffer into which data was going to be read.

X'28'
The address of the I/O buffer from which data was going to be written.

X'2C'
The address of the I/O buffer that contains the control interval contents that are about to
be written.

X'30'
Address of the buffer control block (BUFC) that points to the buffer into which data is
about to be read under exclusive control.

X'34'
Address of BUFC that points to the buffer into which data is about to be read under shared
control.

X'38'
Address of BUFC that points to the buffer which is to be acquired in exclusive control. The
buffer is already in the buffer pool.

X'3C'
Address of the BUFC that points to the buffer which is to be built in the buffer pool in
exclusive control.

X'40'
Address of BUFC which points to the buffer whose exclusive control has just been
released.

X'44'
Address of BUFC which points to the buffer whose contents have been made invalid.

X'48'
Address of the BUFC which points to the buffer into which the READ operation has just
been completed.

X'4C'
Address of the BUFC which points to the buffer from which the WRITE operation has just
been completed.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 205

Table 47. Contents of parameter list built by VSAM for the JRNAD exit. Contents of parameter list built by VSAM for the
JRNAD exit (continued)

Offset Bytes Description

12(X'C') 4 Variable, depends on the reason indicator at offset 20:

Offset 20
Contents at offset 12

X'0C'
The number of bytes of data that is being shifted or moved (this number does not include
free space, if any, or control information, except for a control area split, when the entire
contents of a control interval are moved to a new control interval.)

X'20'
Unpredictable.

X'24'
Unpredictable.

X'28'
Bits 0-31 correspond with transaction IDs 0-31. Bits set to 1 indicate that the buffer that
was being written when the error occurred was modified by the corresponding
transactions. You can set additional bits to 1 to tell VSAM to keep the contents of the
buffer until the corresponding transactions have modified the buffer.

X'2C'
The size of the control interval whose contents are about to be written.

X'30'
Zero.

X'34'
Zero.

X'38'
Zero.

X'3C'
Size of the buffer which is to be built in the buffer pool in exclusive control.

X'48'
Size of the buffer into which the READ operation has just been completed.

X'4C'
Size of the buffer from which the WRITE operation has just been completed.

Return and Reason Codes

206 z/OS: z/OS DFSMStvs Administration Guide

Table 47. Contents of parameter list built by VSAM for the JRNAD exit. Contents of parameter list built by VSAM for the
JRNAD exit (continued)

Offset Bytes Description

16(X'10') 4 Variable, depends on the reason indicator at offset 20:

Offset 20
Contents at offset 16

X'0C'
The RBA of the first byte to which data is being shifted or moved.

X'20'
The RBA of the last byte in the control area about to be split.

X'24'
The fourth byte contains the physical error code from the RPL FDBK field. You use this
fullword to communicate with VSAM. Setting it to 0 indicates that VSAM is to ignore the
error, bypass error processing, and let the processing program continue. Leaving it
nonzero indicates that VSAM is to continue as usual: terminate the request that
occasioned the error and proceed with error processing, including exiting to a physical
error analysis routine.

X'28'
Same as for X'24'.

X'2C'
The RBA of the control interval whose contents are about to be written.

X'48'
Unpredictable.

X'4C'
Unpredictable.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 207

Table 47. Contents of parameter list built by VSAM for the JRNAD exit. Contents of parameter list built by VSAM for the
JRNAD exit (continued)

Offset Bytes Description

20(X'14') 1 Indication of the reason VSAM exited to the JRNAD routine:

X'00'
GET request.

X'04'
PUT request.

X'08'
ERASE request.

X'0C'
RBA change.

X'10'
Read spanned record segment.

X'14'
Write spanned record segment.

X'18'
Reserved.

X'1C'
Reserved.

The following codes are for shared resources only:

X'20'
Control area split.

X'24'
Input error.

X'28'
Output error.

X'2C'
Buffer write.

X'30'
A data or index control interval is about to be read in exclusive control.

X'34'
A data or index control interval is about to be read in shared status.

X'38'
Acquire exclusive control of a control interval already in the buffer pool.

X'3C'
Build a new control interval for the data set and hold it in exclusive control.

X'40'
Exclusive control of the indicated control interval already has been released.

X'44'
Contents of the indicated control interval have been made invalid.

X'48'
Read completed.

X'4C'
Write completed.

X'50'
Control interval or control area split.

X'54'–X'FF'
Reserved.

Return and Reason Codes

208 z/OS: z/OS DFSMStvs Administration Guide

Table 47. Contents of parameter list built by VSAM for the JRNAD exit. Contents of parameter list built by VSAM for the
JRNAD exit (continued)

Offset Bytes Description

21(X'15') 1 JRNAD exit code set by the JRNAD exit routine. Indication of action to be taken by VSAM after
resuming control from JRNAD (for shared resources only):

X'80'
Do not write control interval.

X'84'
Treat I/O error as no error.

X'88'
Do not read control interval.

X'8C'
Cancel the request for control interval or control area split.

LERAD exit routine to analyze logical errors
A LERAD exit routine should examine the feedback field in the request parameter list to determine what
logical error occurred. What the routine does after determining the error depends on your knowledge of
the kinds of things in the processing program that can cause the error.

VSAM does not call the LERAD exit if the RPL feedback code is 64.

Register contents

Table 48 on page 209 gives the contents of the registers when VSAM exits to the LERAD exit routine.

Table 48. Contents of registers at entry to LERAD exit routine. Contents of registers at entry to LERAD exit routine

Register Contents

0 Unpredictable.

1 Address of the RPL that contains the feedback field the routine should examine. The register
must contain this address if you return to VSAM.

2-13 Unpredictable. Register 13, by convention, contains the address of your processing program's
72-byte save area, which must not be used as a save area by the LERAD routine if the routine
returns control to VSAM.

14 Return address to VSAM.

15 Entry address to the LERAD routine. The register does not contain the logical-error indicator.

Programming considerations

The typical actions of a LERAD routine are:

1. Examine the feedback field in the RPL to determine what error occurred
2. Determine what action to take based on error
3. Close the data set
4. Issue completion messages
5. Terminate processing and exit VSAM or return to VSAM.

If the LERAD exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and returns to VSAM, it must
restore registers 1, 13, and 14, which are used by these macros. It must also provide two save areas; one,
whose address should be loaded into register 13 before the GENCB, MODCB, SHOWCB, or TESTCB is
issued, and the second, to separately store registers 1, 13, and 14.

If the error cannot be corrected, close the data set and either terminate processing or return to VSAM.

If a logical error occurs and no LERAD exit routine is provided (or the LERAD exit is inactive), VSAM
returns codes in register 15 and in the feedback field of the RPL to identify the error.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 209

When your LERAD exit routine completes processing, return to your main program as described in
“Return to a main program” on page 198.

RLSWAIT exit routine
The RLSWAIT exit is entered at the start of the record management request and the request is processed
asynchronously under a separate VSAM execution unit. If a UPAD is specified, RLS ignores it.

The exit can do its own wait processing associated with the record management request that is being
asynchronously executed. When the record management request is complete, VSAM will post the ECB
that the user specified in the RPL.

For RLS, the RLSWAIT exit is entered only for a request wait, never for a resource- or I/O- wait or post as
with non-RLS VSAM UPAD.

The RLSWAIT exit is optional. It is used by applications that cannot tolerate VSAM suspending the
execution unit that issued the original record management request. The RLSWAIT exit is required for
record management request issued in cross memory mode.

RLSWAIT should be specified on each ACB which requires the exit. If the exit is not specified on the ACB
via the EXLST, there is no RLSWAIT exit processing for record management requests associated with that
ACB. This differs from non-RLS VSAM where the UPAD exit is associated with the control block structure
so that all ACBs connected to that structure inherit the exit of the first connector.

To activate RLSWAIT exit processing for a particular record management request, the RPL must specify
OPTCD=(SYN,WAITX). RLSWAIT is ignored if the request is asynchronous.

Register contents

Table 49 on page 210 gives the contents of the registers when RLSWAIT is entered in 31–bit mode.

Table 49. Contents of registers for RLSWAIT exit routine. Contents of registers for RLSWAIT exit routine

Register Contents

1 Address of the user RPL. If a chain of RPLs was passed on the original record management
request, this is the first RPL in the chain.

12 Reserved and must be the same on exit as on entry.

13 Reserved and must be the same on exit as on entry.

14 Return address. The exit must return to VSAM using this register.

15 Address of the RLSWAIT exit.

The RLSWAIT exit must conform to the following restictions:

• The exit must return to VSAM using register 14 and it must return with the same entry environment.
That is, under the same execution unit as on entry and with the same cross-memory environment as on
entry.

• The exit must not issue any request using the RPL passed in register 1.
• The exit must be reentrant if multiple record management request that use the exit can be concurrently

outstanding.

Request environment

VSAM RLS record management requests must be issued in PRIMARY ASC mode and cannot be issued in
home, secondary, or AR ASC mode. The user RPL, EXLST, ACB, must be addressable from primary. Open
must have been issued from the same primary address space. VSAM RLS record management request
task must be the same as the task that opened the ACB, or the task that opened the ACB must be in the
task hierarchy (i.e., the record management task was attached by that task that opened the ACB, or by a
task that was attached by the task that opened that ACB). VSAM RLS record management requests must
not be issued in SRB mode, and must not have functional recovery routine (FRR) in effect.

Return and Reason Codes

210 z/OS: z/OS DFSMStvs Administration Guide

If the record management request is issued in cross memory mode, then the caller must be in supervisor
state and must specify that an RLSWAIT exit is associated with the request (RPLWAITX = ON). The
request must be synchronous.

The RLSWAIT exit is optional for non-cross memory mode callers.

The RLSWAIT exit, if specified, is entered at the beginning of the request and VSAM processes the request
asynchronously under a separate execution unit. VSAM RLS does not enter the RLSWAIT exit for post
processing.

VSAM assumes that the ECB supplied with the request is addressable form both home and primary, and
that the key of the ECB is the same as the key of the record management caller.

SYNAD exit routine to analyze physical errors
VSAM exits to a SYNAD routine if a physical error occurs when you request access to data. It also exits to
a SYNAD routine when you close a data set if a physical error occurs while VSAM is writing the contents of
a buffer out to direct-access storage.

Register contents

Table 50 on page 211 gives the contents of the registers when VSAM exits to the SYNAD routine.

Table 50. Contents of registers at entry to SYNAD exit routine. Contents of registers at entry to SYNAD exit routine

Register Contents

0 Unpredictable.

1 Address of the RPL that contains a feedback return code and the address of a message area, if
any. If you issued a request macro, the RPL is the one pointed to by the macro. If you issued an
OPEN, CLOSE, or cause an end-of-volume to be done, the RPL was built by VSAM to process an
internal request. Register 1 must contain this address if the SYNAD routine returns to VSAM.

2-13 Unpredictable. Register 13, by convention, contains the address of your processing program's
72-byte save area, which must not be used by the SYNAD routine if it returns control to VSAM.

14 Return address to VSAM.

15 Entry address to the SYNAD routine.

Programming considerations

A SYNAD routine should typically:

• Examine the feedback field in the request parameter list to identify the type of physical error that
occurred.

• Get the address of the message area, if any, from the request parameter list, to examine the message
for detailed information about the error

• Recover data if possible
• Print error messages if uncorrectable error
• Close the data set
• Terminate processing.

The main problem with a physical error is the possible loss of data. You should try to recover your data
before continuing to process. Input operation (ACB MACRF=IN) errors are generally less serious than
output or update operation (MACRF=OUT) errors, because your request was not attempting to alter the
contents of the data set.

If the routine cannot correct an error, it might print the physical-error message, close the data set, and
terminate the program. If the error occurred while VSAM was closing the data set, and if another error
occurs after the exit routine issues a CLOSE macro, VSAM doesn't exit to the routine a second time.

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 211

If the SYNAD routine returns to VSAM, whether the error was corrected or not, VSAM drops the request
and returns to your processing program at the instruction following the last executed instruction. Register
15 is reset to indicate that there was an error, and the feedback field in the RPL identifies it.

Physical errors affect positioning. If a GET was issued that would have positioned VSAM for a subsequent
sequential GET and an error occurs, VSAM is positioned at the control interval next in key (RPL
OPTCD=KEY) or in entry (OPTCD=ADR) sequence after the control interval involved in the error. The
processing program can therefore ignore the error and proceed with sequential processing. With direct
processing, the likelihood of reencountering the control interval involved in the error depends on your
application.

If the exit routine issues GENCB, MODCB, SHOWCB, or TESTCB and returns to VSAM, it must provide a
save area and restore registers 13 and 14, which these macros use.

See “Example of a SYNAD user-written exit routine” on page 212 for the format of a physical-error
message that can be written by the SYNAD routine.

When your SYNAD exit routine completes processing, return to your main program as described in
“Return to a main program” on page 198.

If a physical error occurs and no SYNAD routine is provided (or the SYNAD exit is inactive), VSAM returns
codes in register 15 and in the feedback field of the RPL to identify the error. For a description of these
return codes, see “Understanding VSAM macro return and reason codes” on page 167.

Example of a SYNAD user-written exit routine

The example in Figure 7 on page 213 demonstrates a user-written exit routine. It is a SYNAD exit routine
that examines the FDBK field of the RPL checking for the type of physical error that caused the exit. After
the checking, special processing can be performed as necessary. The routine returns to VSAM after
printing an appropriate error message on SYSPRINT.

Return and Reason Codes

212 z/OS: z/OS DFSMStvs Administration Guide

ACB1 ACB EXLST=EXITS

EXITS EXLST SYNAD=PHYERR
RPL1 RPL ACB=ACB1,
 MSGAREA=PERRMSG,
 MSGLEN=128

PHYERR USING *,15 This routine is nonreentrant.
* Register 15 is entry address.
 .
 . Save caller's register
 (1, 13, 14).
 LA 13,SAVE Point to routine's save area.
 .
 . If register 1=address of RPL1,
 . then error did not occur for a
 CLOSE.
 SHOWCB RPL=RPL1,
 FIELDS=FDBK,
 AREA=ERRCODE,
 LENGTH=4

* Show type of physical error.
 .
 . Examine error, perform special
 . processing.
 PUT PRTDCB,ERRMSG Print physical error message.
 .
 . Restore caller's registers
 . (1, 13, 14).

 BR 14 Return to VSAM.
 .
 .
 .
ERRCODE DC F'0' RPL reason code from SHOWCB.
PERRMSG DS 0XL128 Physical error message.

 DS XL12 Pad for unprintable part.

ERRMSG DS XL116 Printable format part of message.
 .
 .
 .
PRTDCB DCB QSAM DCB.

SAVE DS 18F SYNAD routine's save area.

SAVREG DS 3F Save registers 1, 13, 14.

Figure 7. Example of a SYNAD exit routine

UPAD exit routine for user processing
VSAM calls the UPAD routine only when the request's RPL specifies OPTCD=(SYN, WAITX) and the ACB
specifies MACRF=LSR or MACRF=GSR, or MACRF=ICI. VSAM CLOSE can also cause a UPAD exit to be
taken to post a record-management request deferred for VSAM internal resource. VSAM takes the UPAD
exit to wait for I/O completion or for a serially reusable resource and the UPAD can also be taken to do the
corresponding post processing subject to conditions listed in Table 51 on page 214.

If you are executing in cross-memory mode, you must have a UPAD routine and RPL must specify WAITX.
z/OS DFSMS Using Data Sets describes cross-memory mode. The UPAD routine is optional for non-cross-
memory mode.

Table 51 on page 214 describes the conditions in which VSAM calls the UPAD routine for synchronous
requests with shared resources. UPAD routine exits are taken only for synchronous requests with shared
resources or improved control interval processing (ICI).

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 213

Table 51. Conditions when exits to UPAD routines are taken. Conditions when exits to UPAD routines are taken

XMM
Sup.
state

UPAD
needed I/O wait I/O post Resource wait Resource post

Yes Yes Yes UPAD taken UPAD taken UPAD taken UPAD taken

No Yes No UPAD taken if
requested

UPAD not taken
even if requested

UPAD taken if
requested

UPAD taken if either resource
owner or the deferred request
runs in XM mode

No No No UPAD taken if
requested

UPAD not taken
even if requested

UPAD taken if
requested

UPAD taken if either resource
owner or the deferred request
runs in XM mode

Notes:

• You must be in supervisor state when you are in cross-memory mode or SRB mode.
• RPL WAITX is required if UPAD is required. A UPAD routine can be taken only if RPL specifies WAITX.
• VSAM gives control to the UPAD exit in the same primary address space of the VSAM record

management request. However, VSAM can give control to UPAD with home and secondary ASIDs
different from those of the VSAM record management request because the exit was set up during OPEN.

• When a UPAD exit is taken to do post processing, make sure the ECB is marked posted before returning
to VSAM. VSAM does not check the UPAD return code and does not do post after UPAD has been taken.
For non-cross-memory task mode only, if the UPAD exit taken for wait returns with ECB not posted,
VSAM issues a WAIT SVC.

• The UPAD exit must return to VSAM in the same address space, mode, state, and addressing mode, and
under the same TCB or SRB from which the UPAD exit was called. Registers 1, 13, and 14 must be
restored before the UPAD exit returns to VSAM.

• ICI does not require UPAD for any mode. Resource wait and post processings do not apply to ICI.

RLS ignores the UPAD exit.

Register contents

Table 52 on page 214 shows the register contents passed by VSAM when the UPAD exit routine is
entered.

Table 52. Contents of registers at entry to UPAD exit routine. Contents of registers at entry to UPAD exit routine

Register Contents

0 Unpredictable.

1 Address of a parameter list built by VSAM.

2-12 Unpredictable.

13 Reserved.

14 Return address to VSAM.

15 Entry address of the UPAD routine.

Programming considerations

The UPAD exit routine must be active before the data set is opened. The exit must not be made inactive
during processing. If the UPAD exit is desired and multiple ACBs are used for processing the data set, the
first ACB that is opened must specify the exit list that identifies the UPAD exit routine.

You can use the UPAD exit to examine the contents of the parameter list built by VSAM, pointed to by
register 1. Table 53 on page 215 describes this parameter list.

Return and Reason Codes

214 z/OS: z/OS DFSMStvs Administration Guide

Table 53. Parameter list passed to UPAD routine. Parameter list passed to UPAD routine

Offset Bytes Description

0(X'0') 4 Address of user's RPL; address of system-generated RPL if UPAD is taken for
CLOSE processing or for an alternate index through a path.

4(X'4') 4 Address of a 5-byte data set identifier. The first four bytes of the identifier
are the ACB address. The last byte identifies the component; data (X'01'), or
index (X'02').

8(X'8') 4 Address of the request's ECB.

12(X'0C') 4 Reserved.

12(X'10') 1 UPAD flags:

Bit 0 = ON: Wait for resource
Bit 0 = OFF: Wait for I/O

(Bit 0 is only applicable to UPAD taken for wait processing.)

Lower 7 bits are reserved.

16(X'11') 4 Reserved.

20(X'14') 1 Reason code:

X'00' VSAM to do wait processing
X'04' UPAD to do post processing
X'08'–X'FC' Reserved

If the UPAD exit routine modifies register 14 (for example, by issuing a TESTCB), the routine must restore
register 14 before returning to VSAM. If register 1 is used, the UPAD exit routine must restore it with the
parameter list address before returning to VSAM.

The UPAD routine must return to VSAM under the same TCB from which it was called for completion of
the request that caused VSAM to exit. The UPAD exit routine cannot use register 13 as a save area pointer
without first obtaining its own save area.

The UPAD exit routine, when taken before a WAIT during LSR or GSR processing, might issue other VSAM
requests to obtain better processing overlap (similar to asynchronous processing). However, the UPAD
routine must not issue any synchronous VSAM requests that do not specify WAITX, because a started
request might issue a WAIT for a resource owned by a starting request.

If the UPAD routine starts requests that specify WAITX, the UPAD routine must be reentrant. After
multiple requests have been started, they should be synchronized by waiting for one ECB out of a group of
ECBs to be posted complete rather than waiting for a specific ECB or for many ECBs to be posted
complete. (Posting of some ECBs in the list might be dependent on the resumption of some of the other
requests that entered the UPAD routine.)

If you are executing in cross-memory mode, you must have a UPAD routine and RPL must specify WAITX.
When waiting or posting of an event is required, the UPAD routine is given control to do wait or post
processing (reason code 0 or 4 in the UPAD parameter list).

User-security-verification routine
If you use VSAM password protection, you can also have your own routine to check a requester's
authority. Your routine is invoked from OPEN, rather than via an exit list. VSAM transfers control to your
routine, which must reside in SYS1.LINKLIB, when a requester gives a correct password other than the
master password.

Recommendation: Do not use VSAM password protection. Instead, use RACF or an equivalent product.

Through the access method services DEFINE command with the AUTHORIZATION parameter you can
identify your user-security-verification routine (USVR) and associate as many as 256 bytes of your own
security information with each data set to be protected. The user-security-authorization record (USAR) is

Return and Reason Codes

Chapter 3. Customizing the DFSMStvs environment 215

made available to the USVR when the routine gets control. You can restrict access to the data set as you
choose. For example, you can require that the owner of a data set give ID when defining the data set and
then permit only the owner to gain access to the data set.

If the USVR is being used by more than one task at a time, you must code the USVR reentrant or develop
another method for handling simultaneous entries.

When your USVR completes processing, it must return (in register 15) to VSAM with a return code of 0 for
authority granted or not 0 for authority withheld in register 15. Table 54 on page 216 gives the contents of
the registers when VSAM gives control to the USVR.

Table 54. Communication with user-security-verification routine. Communication with user-security-verification
routine

Register Contents

0 Unpredictable.

1 Address of a parameter list with the following format:

44 bytes Name of the data set for which authority to process is to be verified (the name you
specified when you defined it with access method services)

8 bytes Prompting code (or 0's).

8 bytes Owner identification (or 0's).

8 bytes The password that the requester gave (it has been verified by VSAM).

2 bytes Length of the user-security-authorization routine (in binary).

– The user-security-authorization.

2-13 Unpredictable.

14 Return address to VSAM.

15 Entry address to the USVR. When the routine returns to VSAM, it indicates by the following codes
in register 15 if the requester has been authorized to gain access to the data set:

0 Authority granted.

not 0 Authority withheld.

Return and Reason Codes

216 z/OS: z/OS DFSMStvs Administration Guide

Chapter 4. Programming applications to use
DVSMStvs

This topic contains Programming Interface information.

Application programming tasks for DFSMStvs include modifying existing applications to use, designing
and coding new applications, and handling DFSMStvs error codes.

Modifying applications to use DFSMStvs
You can modify an application to use DFSMStvs by specifying RLS in the JCL or the access control block
(ACB) and having the application access a recoverable data set using either open for input with CRE or
open for output from a batch job. Before modifying your existing applications, you need to determine
which applications can use DFSMStvs effectively and how to change an application that currently uses
nonshared resources to use DFSMStvs. For information about which applications to modify and how to
modify them, see z/OS DFSMStvs Planning and Operating Guide.

Designing and coding applications to use DFSMStvs
For information about designing and coding applications to use DFSMStvs, see z/OS DFSMStvs Planning
and Operating Guide.

Handling DFSMStvs error codes
This topic lists DFSMStvs error codes in return code and reason code tables. All errors listed are failures
unless otherwise indicated. Some reason codes descriptions might appear more than once because each
reason code also uniquely identifies the module that issued it.

Reason codes use a standard format:

• ccmmrrrr cc: two-digit hexadecimal component identifier. For DFSMStvs, this is either 6F for
Recoverable File Services or 70 for DFSMStvs Logging Services.

• mm: two-digit hexadecimal module identifier.
• rrrr: four-digit unique reason code

Module identifiers
Each reason code uniquely identifies the module that issued it. Table 55 on page 217 lists the two-digit
hexadecimal module identifiers.

Table 55. Reason code module identifiers. This table lists the two-digit hexadecimal module identifiers.

Module Identifier Area

IGW8IIN1 01 Initialization

IGW8RRES 03 Restart

IGW8OODS 04 Open

IGW8OCDS 05 Close module identifier area

IGW8FCRB 06 Front end processing

IGW8FEXP 07 Front end processing

Programming applications to use DVSMStvs

© Copyright IBM Corp. 2003, 2020 217

Table 55. Reason code module identifiers. This table lists the two-digit hexadecimal module identifiers.
(continued)

Module Identifier Area

IGW8FCLN 08 Front-end processing clean-up routine

IGW8RECE 09 End context exit

IGW8REOM 0A End-of-memory exit

IGW8RCHK 0B State check

IGW8RPRP 0C Prepare

IGW8RPR1 0D Prepare

IGW8RCMT 0E Commit

IGW8RCMS 0F Commit

IGW8RBOU 10 Backout

IGW8RIOM 11 Backout

IGW8RBOS 12 Backout

IGW8ROP2 15 SMSVSAM server open

IGW8RCLS 16 SMSVSAM server close

IGW8RMSG 17 Message processing

IGW8RCSE 18 Context switch exit

IGW8RNFY 19 Notification exit

IGW8RQUI 1A Quiesce exit

IGW8RCEF 1B Context services exit failed exit

IGW8IIN2 1C Initialization

IGW8RVTV 1D Sync point processing

IGW8RDSN 1E Shunt processing

IGW8PCLN 1F Peer recovery processing

IGW8QPOP 20 Quiesce processing or shunt processing

IGW8FLBI 21 Front end processing

IGW8FLAI 22 Front end processing

IGW8RPC1 23 PC router

IGW8RPC2 24 PC router

IGW8RPC3 25 PC router

IGW8FLPA 26 Front end processing

IGW8RCHN 27 RPL chain processing

IGW8FMSG 28 Message processing

IGW8XMSG 29 Message processing

IGW8ROAE 2A Only agent exit

IGW8SLUD 2B Shunt processing

Programming applications to use DVSMStvs

218 z/OS: z/OS DFSMStvs Administration Guide

Table 55. Reason code module identifiers. This table lists the two-digit hexadecimal module identifiers.
(continued)

Module Identifier Area

IGW8FEPL 2C Front end processing

IGW8QEXR 2D Quiesce exit

IGW8QEXP 2E Quiesce exit

IGW8QEXT 2F Quiesce exit

IGW8QEXR 30 Quiesce exit

IGW8CDLG 31 Command processing

IGW8CDTV 32 Command processing

IGW8CDJB 33 Command processing

IGW8CDDS 35 Command processing

IGW8CVLG 36 Command processing

IGW8CVTV 37 Command processing

IGW8CSQT 38 Command processing

IGW8CSAK 39 Command processing

IGW8CDUR 3B Command processing

IGW8RREF 3C Exit failed exit

IGW8OLOG 3F Open

IGW8RRTS 40 Restart

IGW8IIN6 41 Initialization

IGW8RRMC 42 Backout

IGW8SRBC 43 Shunt processing

IGW8SRUR 44 Shunt processing

IGW8SPBC 45 Shunt processing - base cluster

IGW8SPUR 46 Shunt processing - unit of recovery (UR)

IGW8SLBC 47 Shunt processing - base cluster

IGW8SLUR 48 Shunt processing - unit of recovery (UR)

IGW8SLUC 49 Shunt processing

IGW8IIN7 4A Initialization

IGW8CVT1 4B Command processing

IGW8FTSK 4C Front end processing

IGW8RCID 4D Commit

IGW8RBID 4E Backout

IGW8RAKP 4F Activity keypointing

IGW8RCSE 50 Context switch exit

IGW8QSHN 51 Redrive shunt processor

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 219

Table 55. Reason code module identifiers. This table lists the two-digit hexadecimal module identifiers.
(continued)

Module Identifier Area

IGW8IRLB 52 Initialization

IGW8RSRB 53 SRB scheduling

IGW8RSR1 54 SRB scheduling

IGW8RFRR 55 SRB Recovery routine

IGW8RSCH 56 Schedule SRB

IGW8RCLN 57 Sync point processing clean-up routine

IGW8ISTX 58 Read undo log

IGW8IRS1 59 Read undo log

IGW8IRS2 5A Read undo log

IGW8PIN1 5B Read undo log

IGW8PIN2 5C Read undo log

IGW8OPNR 5D Open data set exit

IGW8REOX 5E End of task, job step, or memory

IGW8RCS1 5F Context switch

IGW8RSR2 60 SRB processing

IGW8RSR3 61 SRB processing

IGW8RSR4 62 SRB processing

IGW8RSHN 63 Shunt processing

Initialization reason codes
Initialization reason codes

Reason Code Description

6F021000 IGW8IIN1: Initialization was unable to get main storage for the DFSMStvs master
information block (TMIB).

6F021001 IGW8IIN1: Generate message failure

6F021002 IGW8IIN1: Instance name failure

6F021003 IGW8IIN1: Initialization invoked the service queue manager (SQM) to submit a task,
and SQM returned an error.

6F021004 IGW8IIN1: Initialization was unable to create a storage pool for DFSMStvs context unit-
of-recovery blocks (CURBs).

6F02100F IGW8IIN1: Initialization attempted to set the token for the DFSMStvs master
information block (TMIB) and received an error.

6F021010 IGW8IIN1: VRGB extract token failure

6F021011 IGW8IIN1: Initialization attempted to extract the token for the VSAM record-level
sharing (RLS) master information block (VMIB) and received an error.

6F021012 IGW8IIN1: Initialization was unable to create a storage pool for DFSMStvs open block
extensions (TOBEs)

Programming applications to use DVSMStvs

220 z/OS: z/OS DFSMStvs Administration Guide

Initialization reason codes (continued)

Reason Code Description

6F021013 IGW8IIN1: Initialization was unable to create a storage pool for DFSMStvs open block
extension headers (TOBHs)

6F021014 IGW8IIN1: DFSMStvs did not initialize because no DFSMStvs instance name was found
for this system

6F021016 IGW8IIN1: Initialization was unable to create a storage pool for DFSMStvs data set lists
(TDSLs)

6F021017 IGW8IIN1: Initialization was unable to initialize the DFSMStvs latch in the TMIB

6F021018 IGW8IIN1: ACB pool failure

6F021019 IGW8IIN1: Initialization detected an error while converting from ESTAE to FRR

6F02101A IGW8IIN1: Initialization detected an error while converting from FRR to ESTAE

6F02101B IGW8IIN1: Initialization received an error while attempting to get main arguments

6F021029 IGW8IIN1: MDTA pool failure

6F021040 IGW8IIN1: TMIB DFSMStvs restart latch failure

6F021047 IGW8IIN1: QFET pool failure

6F021048 IGW8IIN1: QEXT pool failure

6F021049 IGW8IIN1: TMIB set ATOKEN failure

6F021051 IGW8IIN1: QFET SQM submit failure

6F021054 IGW8IIN1: IFGQ pool failure

6F021055 IGW8IIN1: IGWLOGS pool failure

6F02105E IGW8IIN1: QDSN pool failure

6F021073 IGW8IIN1: Initialize shunt latch failure

6F021077 IGW8IIN1: Initialize indoubt latch failure

6F021086 IGW8IIN1: CSV query failure

6F02108B IGW8IIN1: Initialize allocation/open latch failure

6F021091 IGW8IIN1: CSV query failure

6F021098 IGW8IIN1: Initialize open/close latch failure

6F02109B IGW8IIN1: TMIB command latch failure

6F0210F7 IGW8IIN1: Initialization invoked the service queue manager (SQM) to create a task, and
SQM returned an error.

6F1C1000 IGW8IIN2: Initialization was unable to get main storage for the DFSMStvs master
information block (TMIB)

6F1C1001 IGW8IIN2: Generate message failure

6F1C1005 IGW8IIN2: Initialization attempted to connect to the SHCDS and received an
unexpected error

6F1C1006 IGW8IIN2: Initialization attempted to disconnect from the SHCDS and received an
unexpected error

6F1C1007 IGW8IIN2: Initialization attempted to add a system line to the SHCDS and received an
unexpected error

6F1C1008 IGW8IIN2: Initialization invoked storage management locking services (SMLS) to
identify itself and received an unexpected error

6F1C1009 IGW8IIN2: Initialization detected an error while trying to FREEMAIN the DFSMStvs
master information block (TMIB)

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 221

Initialization reason codes (continued)

Reason Code Description

6F1C100A IGW8IIN2: Initialization invoked the context services CRGGRM function to register as a
resource manager and received an error

6F1C100B IGW8IIN2: Initialization invoked the context services CRGSEIF function to register its
exit information and received an error

6F1C100C IGW8IIN2: CRGSEIFCNT failure

6F1C100D IGW8IIN2: Initialization invoked the RRS (resource recovery services) ATRIRLN
function to retrieve log names and received an error

6F1C100E IGW8IIN2: Initialization invoked the RRS (resource recovery services) ATRISLN
function to set its log name and received an error

6F1C100F IGW8IIN2: TMIB set GTOKEN failure

6F1C1010 IGW8IIN2: Initialization attempted to extract the token for the VSAM RLS global block
(VRGB) and received an error

6F1C1015 IGW8IIN2: Initialization detected an error during DFSMStvs logger initialization

6F1C1019 IGW8IIN2: Convert to FRR failure

6F1C101A IGW8IIN2: Convert to ESTAE failure

6F1C101C IGW8IIN2: Initialization received an error while attempting FREEMAIN arguments

6F1C101D IGW8IIN2: Initialization detected an error while trying to obtain the DFSMStvs latch in
the TMIB

6F1C101E IGW8IIN2: Initialization detected an error while trying to release the DFSMStvs latch in
the TMIB

6F1C101F IGW8IIN2: Context services function CRGSEIF context failure

6F1C1020 IGW8IIN2: Initialization invoked the RRS (resource recovery services) ATRBRS function
to begin restart and received an error

6F1C1021 IGW8IIN2: Initialization invoked the RRS (resource recovery services) ATRIRNI
function to retrieve a unit of recovery interest and received an error

6F1C1022 IGW8IIN2: ATRIERS failure

6F1C1023 IGW8IIN2: TMIB extract token failure

6F1C1024 IGW8IIN2: An error occurred while initialization was attempting to build a CURB

6F1C1023 IGW8IIN2: Initialization attempted to extract the token for the TMIB received an error

6F1C1025 IGW8IIN2: Initialization attempted to extract the token for the TMIB received an error

6F1C1026 IGW8IIN2: Initialization attempted to add a line to the SHCDS for RRS (resource
recovery services) and received an error

6F1C1027 IGW8IIN2: Initialization attempted to retrieve system instance data from the SHCDS
and received an error

6F1C1028 IGW8IIN2: Initialization attempted to find an item in the SHCDS and received an error

6F021029 IGW8IIN2: Initialization was unable to create a storage pool for MDTA blocks

6F1C1038 IGW8IIN2: Initialization received an error while trying to register result

6F1C1039 IGW8IIN2: Initialization invoked the SMLS query subsystem function and received an
error

6F021040 IGW8IIN2: Initialization was unable to initialize the restart latch in the TMIB

6F1C1041 IGW8IIN2: Initialization detected an error while trying to obtain the restart latch in the
TMIB

6F1C1042 IGW8IIN2: Initialization detected an error while trying to release the restart latch in the
TMIB

Programming applications to use DVSMStvs

222 z/OS: z/OS DFSMStvs Administration Guide

Initialization reason codes (continued)

Reason Code Description

6F1C1043 IGW8IIN2: Initialization detected an error while trying to start a browse of the undo log
to perform restart processing

6F1C1044 IGW8IIN2: Initialization detected an error while trying to end a browse of the undo log
during restart processing

6F1C1045 IGW8IIN2: Undo get next failure

6F1C1045 IGW8IIN2: Restore chain failure

6F1C1046 IGW8IIN2: Get TDSL block failure

6F1C1049 IGW8IIN2: TMIB set ATOKEN failure

6F1C1053 IGW8IIN2: QEXT SQM submit failure

6F1C1057 IGW8IIN2: DFSMStvs logger log of logs connect failure

6F1C105A IGW8IIN2: Initialize connection to undo log submit failure

6F1C105B IGW8IIN2: Initialize connection to log of logs submit failure

6F1C105C IGW8IIN2: Initialize connection to undo log failure

6F1C105D IGW8IIN2: Initialize connection to log of logs failure

6F1C1062 IGW8IIN2: Sharing control delete RRS (resource recovery services) list failure

6F1C1064 IGW8IIN2: SGIB extract token failure

6F1C1065 IGW8IIN2: SMIB extract token failure

6F1C1066 IGW8IIN2: DFSMStvs logger general log disconnect failure

6F1C1067 IGW8IIN2: Free TDSL block failure

6F1C106D IGW8IIN2: FREEMAIN close list failure

6F1C106E IGW8IIN2: GETMAIN close list failure

6F1C106F IGW8IIN2: Front end task SQM submit failure

6F1C1071 IGW8IIN2: Obtain shunt latch failure

6F1C1072 IGW8IIN2: Release shunt latch failure

6F1C1074 IGW8IIN2: Excess sharing control lines failure

6F1C1075 IGW8IIN2: Obtain indoubt latch failure

6F1C1076 IGW8IIN2: Release indoubt latch failure

6F1C1080 IGW8IIN2: Browse chains start failure

6F1C1081 IGW8IIN2: Browse chains end failure

6F1C1082 IGW8IIN2: Get next chain failure

6F1C1083 IGW8IIN2: Chain browse get next failure

6F1C1084 IGW8IIN2: The 'about to release locks' record is present and should not be

6F1C1085 IGW8IIN2: The 'about to release locks' record is not first on chain

6F1C1087 IGW8IIN2: SMLS lost locks failure

6F1C1088 IGW8IIN2: Undo log quiesce failure

6F1C1089 IGW8IIN2: Shunt log quiesce failure

6F1C108A IGW8IIN2: DFSMStvs quiesce failure

6F1C109C IGW8IIN2: Obtain command latch failure

6F1C109D IGW8IIN2: Release command latch failure

6F1C109E IGW8IIN2: Log of Logs Quiesce Failure

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 223

Initialization reason codes (continued)

Reason Code Description

6F1C10AC IGW8IIN2: Log of Logs Quiesce Failure

6F411019 IGW8IIN6: Convert to FRR failure

6F41101A IGW8IIN6: Convert to ESTAE failure

6F41101D IGW8IIN6: Obtain TMIB latch failure

6F41101E IGW8IIN6: Release TMIB latch failure

6F411023 IGW8IIN6: TMIB extract token failure

6F411039 IGW8IIN6: SMLS Query subsystem failure

6F41105F IGW8IIN6: Read undo log failure

6F411060 IGW8IIN6: Start browse failure

6F411061 IGW8IIN6: End browse failure

6F4A1005 IGW8IIN7: Sharing control connect failure

6F4A1006 IGW8IIN7: Sharing control disconnect failure

6F4A1019 IGW8IIN7: Convert to FRR failure

6F4A101A IGW8IIN7: Convert to ESTAE failure

6F4A1068 IGW8IIN7: Sharing control find item failure

6F4A1069 IGW8IIN7: Sharing control get system instance failure

6F4A106A IGW8IIN7: GETMAIN sharing control failure

6F4A106B IGW8IIN7: FREEMAIN sharing control failure

6F4A106C IGW8IIN7: Sharing control delete list failure

6F521005 IGW8IRLB: Sharing control connect failure

6F521006 IGW8IRLB: Sharing control disconnect failure

6F521019 IGW8IRLB: Convert to FRR failure

6F52101A IGW8IRLB: Convert to ESTAE failure

6F52101D IGW8IRLB: Obtain TMIB latch failure

6F52101E IGW8IRLB: Release TMIB latch failure

6F521024 IGW8IRLB: Build a CURB failure

6F521038 IGW8IRLB: Register result failure

6F521043 IGW8IRLB: Start browse undo log failure

6F521044 IGW8IRLB: Undo end browse failure

6F521045 IGW8IRLB: Undo get next failure

6F521045 IGW8IRLB: Restore chain failure

6F521046 IGW8IRLB: Get TDSL block failure

6F521067 IGW8IRLB: Free TDSL block failure

6F521068 IGW8IRLB: Sharing control find item failure

6F521069 IGW8IRLB: Sharing control get system instance failure

6F52106A IGW8IRLB: GETMAIN sharing control failure

6F52106B IGW8IRLB: FREEMAIN sharing control failure

6F52106C IGW8IRLB: Sharing control delete list failure

6F52106D IGW8IRLB: FREEMAIN close list failure

Programming applications to use DVSMStvs

224 z/OS: z/OS DFSMStvs Administration Guide

Initialization reason codes (continued)

Reason Code Description

6F52106E IGW8IRLB: GETMAIN close list failure

6F521080 IGW8IRLB: Browse chains start failure

6F521081 IGW8IRLB: Browse chains end failure

6F521082 IGW8IRLB: Get next chain failure

6F521083 IGW8IRLB: Chain browse get next failure

6F521085 IGW8IRLB: The "about to release locks" record is not first on chain

6F52108C IGW8IRLB: Bad undo chain failure

6F52108D IGW8IRLB: Free log record storage failure

6F52108E IGW8IRLB: Get log record storage failure

6F52108F IGW8IRLB: Undo log record check failure

6F521090 IGW8IRLB: Connect to redo log failure

6F521095 IGW8IRLB: Invalid owed file close record on the unit of recovery (UR) chain

6F521096 IGW8IRLB: Invalid start AKP record on UR chain

6F521097 IGW8IRLB: Invalid end AKP record on UR chain

6F521099 IGW8IRLB: No shunt status in DSN failure

6F52109A IGW8IRLB: Bad data name failure

6F52109F IGW8IRLB: Disconnect redo log failure

6F5210A0 IGW8IRLB: Failure on call to SCM to disconnect redo log

6F5210AE IGW8IRLB: Curb latch failure

6F5210B3 IGW8IRLB: Disconnect redo log failure

6F59100E IGW8IRS1: ATRISLN failure

6F591020 IGW8IRS1: ATRIBRS failure

6F591021 IGW8IRS1: ATRIRNI failure

6F591024 IGW8IRS1: Curb build failure

6F59101A IGW8IRS1: Convert to ESTAE failure

6F591019 IGW8IRS1: Convert to Frr failure

6F5910BB IGW8IRS1: Curb latch failure

6F591047 IGW8IRS1: Get TDSL block failure

6F59105C IGW8IRS1: Initialization connection undo log failure

6F5910D3 IGW8IRS1: Obtain indoubt chain latch failure

6F5910CC IGW8IRS1: Obtain restart chain latch failure

6F59101D IGW8IRS1: Obtain TMIB latch failure

6F591038 IGW8IRS1: Register result failure

6F5910D2 IGW8IRS1: ReleaseIndoubtChnLatch failure

6F5910CB IGW8IRS1: ReleaseRestartChnLatch failure

6F59101E IGW8IRS1: ReleaseTmibLatch failure

6F591026 IGW8IRS1: shcds_AddRRSLine failure

6F591005 IGW8IRS1: shcds_Connect failure

6F591006 IGW8IRS1: shcds_DisConnect failure

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 225

Initialization reason codes (continued)

Reason Code Description

6F591039 IGW8IRS1: SMLS_QuerySubsystem failure

6F591015 IGW8IRS1: TLSLogInit failure

6F591057 IGW8IRS1: TLSLogofLogsCon failure

6F591010 IGW8IRS1: VRGB_ExtractToken failure

6F5A101A IGW8IRS2: ConvertToEstae failure

6F5A1092 IGW8IRS2: FreeCurbBlock failure

6F5A1067 IGW8IRS2: FreeTdslBlock failure

6F5A10CC IGW8IRS2: ObtainRestartChnLatch failure

6F5A10CB IGW8IRS2: ReleaseRestartChnLatch failure

6F5A10ED IGW8IRS2: SMLSEndTransaction failure

6F5A1087 IGW8IRS2: SMLSLostLocks failure

6F582000 IGW8ISTX: ATRIRLN failure

6F582001 IGW8ISTX: ATRISLN failure

6F582002 IGW8ISTX: ConvertToEstae failure

6F582003 IGW8ISTX: ConvertToFrr failure

6F58200E IGW8ISTX: CRGGRM failure

6F582004 IGW8ISTX: CRGSEIF failure

6F582005 IGW8ISTX: CRGSEIFRRS failure

6F582006 IGW8ISTX: DeleteSHCLine failure

6F58200D IGW8ISTX: ExcessSHCLines failure

6F58203F IGW8ISTX: Indeterminate failure

6F58200F IGW8ISTX: ObtainTVSLatch failure

6F582007 IGW8ISTX: ShcDeleteRRSList failure

6F582008 IGW8ISTX: ShcdsAddRRSLine failure

6F582009 IGW8ISTX: ShcdsConnect failure

6F58200A IGW8ISTX: ShcdsDisConnect failure

6F58200B IGW8ISTX: ShcFindItem failure

6F58200C IGW8ISTX: ShcGetSysInstance failure

6F582010 IGW8ISTX: ReleaseTVSLatch failure

Open and close reason codes
Open and close reason codes

Reason Code Description

6F041500 IGW8OODS: Open failed because DFSMStvs is unavailable.

6F041503 IGW8OODS: The data set is quiesced.

6F041504 IGW8OODS: Write to undo log failure

6F041505 IGW8OODS: Write to forward recovery log failure

6F041506 IGW8OODS: Write to log of logs failure

6F041508 IGW8OODS: Log stream ID is required.

Programming applications to use DVSMStvs

226 z/OS: z/OS DFSMStvs Administration Guide

Open and close reason codes (continued)

Reason Code Description

6F041509 IGW8OODS: Log stream ID specifies a DFSMStvs undo or shunt log.

6F04150A IGW8OODS: Open failed because the LRECL for data set is greater than 62 KB.

6F04150B IGW8OODS: Open failed because the maximum LRECL for data set is not supported by
forward recovery log.

6F04150C IGW8OODS: Open failed because the maximum LRECL for the data set is not supported
by undo log.

6F04150D IGW8OODS: Open failed because a prior open is still active and the log stream ID or log
parameter has been changed for this open.

6F0415E6 IGW8OODS: Initialize FR latch failure

6F0415E7 IGW8OODS: Release FR latch failure

6F0415E8 IGW8OODS: Get FR latch failure

6F0415EA IGW8OODS: SHCDS disconnect failure

6F0415EB IGW8OODS: TOBE chain failure

6F0415EC IGW8OODS: TOBH chain failure

6F0415ED IGW8OODS: SHCDS connect failure

6F0415EE IGW8OODS: Open failed to obtain the VMIB token

6F0415EF IGW8OODS: Get IGWLOGS pool failure

6F0415F0 IGW8OODS: SQM submit failure

6F0415F1 IGW8OODS: Open detected an error while converting from ESTAE to FRR

6F0415F2 IGW8OODS: Open detected an error while converting from FRR to ESTAE

6F0415F4 IGW8OODS: Open attempted to extract the token for the TMIB received an error

6F0415F5 IGW8OODS: Open attempted to obtain a storage pool for DFSMStvs open block
extension header (TOBH) and received an error

6F0415F6 IGW8OODS: Open received an error while trying to generate a message

6F0415F7 IGW8OODS: Open attempted to release the TOBH latch and received an error

6F0415F8 IGW8OODS: Open was unable to initialize the latch in the TOBH

6F0415F9 IGW8OODS: Open detected an error while trying to release the DFSMStvs latch in the
TMIB

6F0415FA IGW8OODS: Open attempted to obtain the TOBH latch and received an error.

6F0415FB IGW8OODS: Open attempted to obtain the DFSMStvs latch in the TMIB and received an
error

6F0415FC IGW8OODS: Get TOBE pool failure

6F0415FD IGW8OODS: Open attempted to a DFSMStvs open block extension header (TOBH) from
the pool and received an error

6F051601 IGW8OCDS: Disconnect redo log failure

6F0516E9 Close found that the DFSMStvs state or a DFSMStvs log state had previously
transitioned to quiesced or disabled while still in use.

6F0516EC IGW8OCDS: Release FR latch failure

6F0516ED IGW8OCDS: Get FR latch failure

6F0516EE IGW8OCDS: Vary SQM submit failure

6F0516EF IGW8OCDS: Close failed to GETMAIN a parameter list to change the DFSMStvs and
system logs state to quiesced or disabled.

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 227

Open and close reason codes (continued)

Reason Code Description

6F0516F1 IGW8OCDS: The data set being closed has an I/O error on its forward recovery log.
Close detected an error while attempting to obtain a DFSMStvs quiesce request (QEXT)
from the free pool.

6F0516F4 IGW8OCDS: The data set being closed has an I/O error on its forward recovery log.
Close detected an error while trying to quiesce the data set.

6F0516F5 IGW8OCDS: Close detected an error while converting from ESTAE to FRR

6F0516F6 IGW8OCDS: Close detected an error while converting from FRR to ESTAE

6F0516F7 IGW8OCDS: Generate message failure. Close received an error while trying to generate
a message (module IGW8OCDS).

6F0516F8 IGW8OCDS: Close could not find the DFSMStvs open block extension (TOBE) for the
data set

6F0516FA IGW8OCDS: Close attempted to release the TOBH latch and received an error

6F0516FB IGW8OCDS: Close attempted to obtain the TOBH latch and received an error

6F0516FC IGW8OCDS: Close could not find the DFSMStvs open block extension header (TOBH)
for the data set

6F0516FD IGW8OCDS: Close failed while attempting to release the DFSMStvs latch in the TMIB

6F0516FD IGW8OCDS: Release TMIB latch failure

6F0516FE IGW8OCDS: Close failed while attempting to obtain the DFSMStvs latch in the TMIB

6F0516FF IGW8OCDS: Close attempted to extract the token for the TMIB received an error

6F5D1500 IGW8OPNR: DFSMStvs is unavailable

6F5D1504 IGW8OPNR: Connect to undo log failed

6F5D15DE IGW8OPNR: Release peer chain latch failure

6F5D15DF IGW8OPNR: Release indoubt chain latch failure

6F5D15E0 IGW8OPNR: Release shunt chain latch failure

6F5D15E1 IGW8OPNR: Release curb latch failure

6F5D15E2 IGW8OPNR: Get peer chain latch failure

6F5D15E3 IGW8OPNR: Get indoubt chain latch failure

6F5D15E4 IGW8OPNR: Get shunt chain latch failure

6F5D15E5 IGW8OPNR: Get curb latch failure

6F5D15E5 IGW8OPNR: Issue IDARECOV failure

6F5D15F1 IGW8OPNR: Convert to Frr failure

6F5D15F2 IGW8OPNR: Convert to Estae failure

6F5D15F4 IGW8OPNR: Get TMIB failure

6F5D15F6 IGW8OPNR: Generate message failure

6F5D15F9 IGW8OPNR: Release TMIB latch failure

6F5D15FB IGW8OPNR: Get TMIB latch failure

6F2B1600 IGW8OCHK: Active transaction failure

6F2B16F5 IGW8OCHK: Convert to FRR failure

6F2B16F6 IGW8OCHK: Convert to ESTAE failure

6F2B16F7 IGW8OCHK: Generate message failure

6F2B16FD IGW8OCHK: Release TMIB latch failure

Programming applications to use DVSMStvs

228 z/OS: z/OS DFSMStvs Administration Guide

Open and close reason codes (continued)

Reason Code Description

6F2B16FE IGW8OCHK: Get TMIB latch failure

6F2B16FF IGW8OCHK: Get TMIB failure

6F3F1500 IGW8OLOG: Open failed because DFSMStvs is unavailable

6F3F1503 IGW8OLOG: Open failed because the data set is quiesced

6F3F1504 IGW8OLOG: Connect redo log failure

6F3F1504 IGW8OLOG: The forward recovery log is unavailable

6F3F1505 IGW8OLOG: Write to the forward recovery log failed

6F3F1506 IGW8OLOG: Write log of logs failure

6F3F150E IGW8OLOG: Create undo log owed file close chain failure

6F3F150F IGW8OLOG: Write owed file close chain to undo log failed

6F3F1510 IGW8OLOG: There was a previous I/O error on the forward recovery log

6F3F15E9 IGW8OLOG: DFSMStvs open passed a parameter list which was not valid

6F3F15ED IGW8OLOG: SHCDS connect failure

6F3F15EE IGW8OLOG: Get VMIB failure

6F3F15F1 IGW8OLOG: Open failed while converting from ESTAE to FRR

6F3F15F2 IGW8OLOG: Open failed while converting from FRR to ESTAE

6F3F15F4 IGW8OLOG: Open attempted to extract the token for the TMIB and received an error

6F3F15F6 IGW8OLOG: Open detected an error while attempting to issue a message

6F3F15F7 IGW8OLOG: Open failed while attempting to release the TOBH latch

6F3F15F9 IGW8OLOG: Open failed while attempting to release the TMIB latch

6F3F15FA IGW8OLOG: Open failed while attempting to obtain the TOBH latch

6F3F15FB IGW8OLOG: Open failed while attempting to obtain the TMIB latch

6F3F1601 IGW8OLOG: Disconnect redo log failure

6F3F1602 IGW8OLOG: Close detected an error attempting to write a close record to the forward
recovery log

6F3F16EA IGW8OLOG: Close was unable to release the DFSMStvs open/close latch

6F3F16EB IGW8OLOG: Close was unable to obtain the DFSMStvs open/close latch

6F3F16EC IGW8OLOG: Release FR latch failure

6F3F16ED IGW8OLOG: Get FR latch failure

6F3F16F0 IGW8OLOG: SHCDS disconnect failure

6F3F16F2 IGW8OLOG: Close detected an error while attempting to change a log status to
quiesced or disabled for the log of logs

6F3F16F3 IGW8OLOG: Quiesce forward recovery log failure

Command processor reason codes
Command processor reason codes

Reason Code Description

6F311701 IGW8CDLG: Generate message failure

6F311710 IGW8CDLG: Extract TMIB failure

6F311719 IGW8CDLG: Convert to FRR failure

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 229

Command processor reason codes (continued)

Reason Code Description

6F31171A IGW8CDLG: Convert to ESTAE failure

6F31171B IGW8CDLG: GETMAIN arguments failure

6F31171C IGW8CDLG: FREEMAIN arguments failure

6F31171D IGW8CDLG: Obtain TMIB latch failure

6F31171E IGW8CDLG: Release TMIB latch failure

6F311733 IGW8CDLG: Obtain command latch failure

6F311734 IGW8CDLG: Release command latch failure

6F321701 IGW8CDTV: Generate message failure

6F321710 IGW8CDTV: Extract TMIB failure

6F321719 IGW8CDTV: Convert to FRR failure

6F32171A IGW8CDTV: Convert to ESTAE failure

6F32171B IGW8CDTV: GETMAIN arguments failure

6F32171C IGW8CDTV: FREEMAIN arguments failure

6F32171D IGW8CDTV: Obtain TMIB latch failure

6F32171E IGW8CDTV: Release TMIB latch failure

6F321733 IGW8CDTV: Obtain command latch failure

6F321734 IGW8CDTV: Release command latch failure

6F331701 IGW8CDJB: Generate message failure

6F33170D IGW8CDJB: ATRRID failure

6F33170E IGW8CDJB: ATRRURD failure

6F331710 IGW8CDJB: Extract TMIB failure

6F331719 IGW8CDJB: Convert to FRR failure

6F33171A IGW8CDJB: Convert to ESTAE failure

6F33171B IGW8CDJB: GETMAIN arguments failure

6F33171C IGW8CDJB: FREEMAIN arguments failure

6F33171D IGW8CDJB: Obtain TMIB latch failure

6F33171E IGW8CDJB: Release TMIB latch failure

6F331733 IGW8CDJB: Obtain command latch failure

6F331734 IGW8CDJB: Release command latch failure

6F351701 IGW8CDDS: Generate message failure

6F351710 IGW8CDDS: Extract TMIB failure

6F351718 IGW8CDDS: Find failure

6F351719 IGW8CDDS: Convert to FRR failure

6F35171A IGW8CDDS: Convert to ESTAE failure

6F35171B IGW8CDDS: GETMAIN arguments failure

6F35171C IGW8CDDS: FREEMAIN arguments failure

6F35171D IGW8CDDS: Obtain TMIB latch failure

6F35171E IGW8CDDS: Release TMIB latch failure

6F351733 IGW8CDDS: Obtain command latch failure

Programming applications to use DVSMStvs

230 z/OS: z/OS DFSMStvs Administration Guide

Command processor reason codes (continued)

Reason Code Description

6F351734 IGW8CDDS: Release command latch failure

6F361701 IGW8CVLG: Generate message failure

6F361710 IGW8CVLG: Extract TMIB failure

6F361715 IGW8CVLG: DFSMStvs logger initialization failure

6F361719 IGW8CVLG: Convert to FRR failure

6F36171A IGW8CVLG: Convert to ESTAE failure

6F36171B IGW8CVLG: GETMAIN arguments failure

6F36171C IGW8CVLG: FREEMAIN arguments failure

6F36171D IGW8CVLG: Obtain TMIB latch failure

6F36171E IGW8CVLG: Release TMIB latch failure

6F36171F IGW8CVLG: CRGDRM failure

6F361720 IGW8CVLG: SMLS unidentify subsystem failure

6F361721 IGW8CVLG: Init SQM submit failure

6F361722 IGW8CVLG: DFSMStvs logger initialization failure

6F361723 IGW8CVLG: Log disconnect failure

6F361726 IGW8CVLG: Obtain shunt latch failure

6F361727 IGW8CVLG: Release shunt latch failure

6F36172A IGW8CVLG: Vary SQM submit failure

6F361731 IGW8CVLG: Obtain open/close latch failure

6F361732 IGW8CVLG: Release open/close latch failure

6F361733 IGW8CVLG: Obtain command latch failure

6F361734 IGW8CVLG: Release command latch failure

6F361735 IGW8CVLG: Log of logs disconnect failure

6F371701 IGW8CVTV: Generate message failure

6F371710 IGW8CVTV: Extract TMIB failure

6F371719 IGW8CVTV: Convert to FRR failure

6F37171A IGW8CVTV: Convert to ESTAE failure

6F37171B IGW8CVTV: GETMAIN arguments failure

6F37171C IGW8CVTV: FREEMAIN arguments failure

6F37171D IGW8CVTV: Obtain TMIB latch failure

6F37171E IGW8CVTV: Release TMIB latch failure

6F37171F IGW8CVTV: CRGDRM failure

6F371720 IGW8CVTV: SMLS unidentify subsystem failure

6F371721 IGW8CVTV: Init SQM submit failure

6F371723 IGW8CVTV: Log disconnect failure

6F37172A IGW8CVTV: Vary SQM submit failure

6F371733 IGW8CVTV: Obtain command latch failure

6F371734 IGW8CVTV: Release command latch failure

6F381719 IGW8CSAK: Convert to FRR failure

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 231

Command processor reason codes (continued)

Reason Code Description

6F38171A IGW8CSAK: Convert to ESTAE failure

6F381733 IGW8CSAK: Obtain command latch failure

6F381734 IGW8CSAK: Release command latch failure

6F391710 IGW8CSAK: Extract TMIB failure

6F391719 IGW8CSAK: Convert to FRR failure

6F39171A IGW8CSAK: Convert to ESTAE failure

6F391733 IGW8CSAK: Obtain command latch failure

6F391734 IGW8CSAK: Release command latch failure

6F3A1710 IGW8CVDS: Extract TMIB failure

6F3A1719 IGW8CVDS: Convert to FRR failure

6F3A171A IGW8CVDS: Convert to ESTAE failure

6F3A1733 IGW8CVDS: Obtain command latch failure

6F3A1734 IGW8CVDS: Release command latch failure

6F3B1701 IGW8CDUR: Generate message failure

6F3B170D IGW8CDUR: ATRRID failure

6F3B170E IGW8CDUR: ATRRURD failure

6F3B1710 IGW8CDUR: Extract TMIB failure

6F3B1719 IGW8CDUR: Convert to FRR failure

6F3B171A IGW8CDUR: Convert to ESTAE failure

6F3B171B IGW8CDUR: GETMAIN arguments failure

6F3B171C IGW8CDUR: FREEMAIN arguments failure

6F3B171D IGW8CDUR: Obtain TMIB latch failure

6F3B171E IGW8CDUR: Release TMIB latch failure

6F3B1733 IGW8CDUR: Obtain command latch failure

6F3B1734 IGW8CDUR: Release command latch failure

6F4B1701 IGW8CVT1: Generate message failure

6F4B1710 IGW8CVT1: Extract TMIB failure

6F4B1719 IGW8CVT1: Convert to FRR failure

6F4B171A IGW8CVT1: Convert to ESTAE failure

6F4B171B IGW8CVT1: GETMAIN arguments failure

6F4B171C IGW8CVT1: FREEMAIN arguments failure

6F4B171D IGW8CVT1: Obtain TMIB latch failure

6F4B171E IGW8CVT1: Release TMIB latch failure

6F4B171F IGW8CVT1: CRGDRM failure

6F4B1720 IGW8CVT1: SMLS unidentify subsystem failure

6F4B1723 IGW8CVT1: Log disconnect failure

6F4B1726 IGW8CVT1: Obtain shunt latch failure

6F4B1727 IGW8CVT1: Release shunt latch failure

6F4B1728 IGW8CVT1: Obtain indoubt latch failure

Programming applications to use DVSMStvs

232 z/OS: z/OS DFSMStvs Administration Guide

Command processor reason codes (continued)

Reason Code Description

6F4B1729 IGW8CVT1: Release indoubt latch failure

6F4B172B IGW8CVT1: Undo log quiesce failure

6F4B172C IGW8CVT1: Shunt log quiesce failure

6F4B172D IGW8CVT1: Log of logs quiesce failure

6F4B172E IGW8CVT1: Redo log quiesce failure

6F4B1730 IGW8CVT1: Undo log disconnect failure

6F4B1733 IGW8CVT1: Obtain command latch failure

6F4B1734 IGW8CVT1: Release command latch failure

6F4B1735 IGW8CVT1: Log of logs disconnect failure

Front end (VSAM record management) reason codes
Front end (VSAM record management) reason codes

Reason Code Description

6F061100 IGW8FCRB: An attempt to extract the token for the CURB was unsuccessful.

6F061101 IGW8FCRB: An attempt to set the token for the CURB was unsuccessful

6F061104 IGW8FCRB: The TMIB token is zero

6F06112C IGW8FCRB: DFSMStvs is quiesced and there is an existing unit of recovery

6F071106 IGW8FEXP: An invocation of CTXEINT to express interest in a context failed

6F071107 IGW8FEXP: An invocation of ATREINT to express interest in a unit of recovery failed

6F071108 IGW8FEXP: An invocation of ATRSIT to change interest type from unprotected to
protected failed

6F071121 IGW8FEXP: DFSMStvs invoked ATREINT to express interest in a UR, but RRS (resource
recovery services) is unavailable

6F071122 IGW8FEXP: DFSMStvs invoked ATRSIT to change interest type from unprotected to
protected, but RRS (resource recovery services) is unavailable

6F071123 IGW8FEXP: DFSMStvs invoked ATREINT to express interest in a UR, but RRS (resource
recovery services) restarted while the UR was in-flight; the UR must issue a sync point
before issuing further requests

6F07112D IGW8FEXP: The undo log status is not enabled

6F07112F IGW8FEXP: STOKEN extract failure

6F071134 IGW8FEXP: DFSMStvs tried to express interest in a UR and found that DFSMStvs had
restarted

6F07113F IGW8FEXP: DFSMStvs restarted

6F071140 IGW8FEXP: An invocation of CTXSCID to set context interest data failed

6F071143 IGW8FEXP: TTOKEN extract failure

6F08110C IGW8FCLN: An attempt to obtain the DFSMStvs latch in the TMIB failure

6F08110D IGW8FCLN: An attempt to release the DFSMStvs latch in the TMIB failure

6F08111A IGW8FCLN: Front end processing received an error while attempting to generate a
message

6F08114E IGW8FCLN: Later abend failure

6F211100 IGW8FLBI: An attempt to extract the token for the CURB was unsuccessful

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 233

Front end (VSAM record management) reason codes (continued)

Reason Code Description

6F211103 IGW8FLBI: An attempt to extract the token for the TMIB was unsuccessful

6F211105 IGW8FLBI: Get block failure

6F211109 IGW8FLBI: Register result failure

6F21110C IGW8FLBI: An attempt to obtain the DFSMStvs latch in the TMIB failed

6F21110D IGW8FLBI: An attempt to release the DFSMStvs latch in the TMIB failed

6F21110F IGW8FLBI: Request rejected because DFSMStvs is in an invalid state

6F211112 IGW8FLBI: DFSMStvs detected that the RPL passed by the caller is not on the RPL
chain from a previous GET

6F211115 IGW8FLBI: An attempt to force records to the undo log failed

6F21111A IGW8FLBI: Front end processing received an error while attempting to generate a
message

6F21111B IGW8FLBI: An attempt to obtain the DFSMStvs latch in the TMIB for SMLS register
failed

6F21111C IGW8FLBI: An attempt to obtain the DFSMStvs latch in the TMIB to chain a TDSL failed

6F21111D IGW8FLBI: An attempt to obtain the DFSMStvs latch in the TMIB to chain a CURB failed

6F21111E IGW8FLBI: An attempt to obtain the DFSMStvs latch in the TMIB to chain an RPL failed

6F21111F IGW8FLBI: An attempt to obtain the DFSMStvs latch in the TMIB to chain an RPL failed

6F211120 IGW8FLBI: DFSMStvs instance count mismatch

6F21112B IGW8FLBI: The TMIB is not initialized and RRS (resource recovery services) is
unavailable

6F21112C IGW8FLBI: DFSMStvs is quiesced and there is an existing unit of recovery

6F21112D IGW8FLBI: The undo log status is not enabled

6F211131 IGW8FLBI: The data set is quiesced

6F211132 IGW8FLBI: The data set is quiesced

6F211133 IGW8FLBI: The data set is quiesced

6F21115E IGW8FLBI: The data set is quiesced

6F21115F IGW8FLBI: The data set is quiesced

6F211142 IGW8FLBI: The URID in the CURB is zero

6F211148 IGW8FLBI: DFSMStvs is disabling

6F211149 IGW8FLBI: Unexpected error

6F221100 IGW8FLAI: An attempt to extract the token for the CURB was unsuccessful

6F221103 IGW8FLAI: An attempt to extract the token for the TMIB was unsuccessful

6F22110A IGW8FLAI: An attempt to create a chain for undo log records failed

6F22110B IGW8FLAI: An attempt to write a record to the undo log failed

6F22110C IGW8FLAI: An attempt to obtain the DFSMStvs latch in the TMIB failure

6F22110D IGW8FLAI: An attempt to release the DFSMStvs latch in the TMIB failure

6F22110F IGW8FLAI: Request rejected because DFSMStvs is in an invalid state

6F221112 IGW8FLAI: DFSMStvs detected that the RPL passed by the caller is not on the RPL
chain

6F221116 IGW8FLAI: Front end processing received an error while attempting to generate
message IGW10071I

Programming applications to use DVSMStvs

234 z/OS: z/OS DFSMStvs Administration Guide

Front end (VSAM record management) reason codes (continued)

Reason Code Description

6F221117 IGW8FLAI: Front end processing received an error while attempting to generate
message IGW10071I

6F221118 IGW8FLAI: Front end processing received an error while attempting to generate
message IGW10071I

6F22111A IGW8FLAI: Front end processing received an error while attempting to generate a
message

6F221120 IGW8FLAI: DFSMStvs instance count mismatch

6F221124 IGW8FLAI: A buffer length error was detected on a write force request

6F221125 IGW8FLAI: Front end processing received an error while attempting to generate VPDI
common message

6F221126 IGW8FLAI: An attempt to write a record to the redo log failed

6F221127 IGW8FLAI: General log buffer length error

6F221128 IGW8FLAI: A permanent log error occurred trying to create an undo log chain

6F221129 IGW8FLAI: A system logger error occurred writing to a general log

6F22112B IGW8FLAI: The TMIB is not initialized and RRS (resource recovery services) is
unavailable

6F22112C IGW8FLAI: DFSMStvs is quiesced and there is an existing unit of recovery

6F22112D IGW8FLAI: The undo log status is not enabled

6F22112E IGW8FLAI: The undo log status is not enabled

6F221130 IGW8FLAI: The redo log status is not enabled

6F221135 IGW8FLAI: Front end processing received an error while attempting to generate
message IGW10075I

6F221136 IGW8FLAI: Front end processing received an error while attempting to generate
message IGW10075I

6F221137 IGW8FLAI: Front end processing received an error while attempting to generate
message IGW10075I

6F221138 IGW8FLAI: Front end processing received an error while attempting to generate
message IGW10073I

6F221139 IGW8FLAI: Front end processing received an error while attempting to generate
message IGW10073I

6F22113A IGW8FLAI: Front end processing received an error while attempting to generate
message IGW10073I

6F22113B IGW8FLAI: Front end processing received an error while attempting to generate
message IGW10073I

6F221148 IGW8FLAI: DFSMStvs is disabling

6F221149 IGW8FLAI: Unexpected error

6F261100 IGW8FLPA: An attempt to extract the token for the CURB was unsuccessful

6F261103 IGW8FLPA: An attempt to extract the token for the TMIB was unsuccessful

6F26110A IGW8FLPA: An attempt to create a chain for undo log records failed

6F26110B IGW8FLPA: An attempt to write a record to the undo log failed

6F26110C IGW8FLPA: An attempt to obtain the DFSMStvs latch in the TMIB failure

6F26110D IGW8FLPA: An attempt to release the DFSMStvs latch in the TMIB failure

6F26110F IGW8FLPA: Request rejected because DFSMStvs is in an invalid state

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 235

Front end (VSAM record management) reason codes (continued)

Reason Code Description

6F26111A IGW8FLPA: Front end processing received an error while attempting to generate a
message

6F261120 IGW8FLPA: DFSMStvs instance count mismatch

6F261124 IGW8FLPA: A buffer length error was detected on a write force request

6F261128 IGW8FLPA: A permanent log error occurred trying to create an undo log chain

6F26112B IGW8FLPA: The TMIB is not initialized and RRS (resource recovery services) is
unavailable

6F26112C IGW8FLPA: DFSMStvs is quiesced and there is an existing unit of recovery

6F26112D IGW8FLPA: The undo log status is not enabled

6F26112E IGW8FLPA: The undo log status is not enabled

6F261148 IGW8FLPA: DFSMStvs is disabling

6F261149 IGW8FLPA: Unexpected error

6F281119 IGW8FMSG: An attempt was made to generate a message for which a message
definition could not be found

6F28113C IGW8FMSG: An error occurred attempting to generate a variant of message
IGW10071I

6F28113D IGW8FMSG: An error occurred attempting to generate a variant of message
IGW10073I

6F28113E IGW8FMSG: An error occurred attempting to generate a variant of message
IGW10075I

6F281149 IGW8FMSG: Unexpected error

6F4C1103 IGW8FTSK: An attempt to extract the token for the TMIB was unsuccessful

6F4C110C IGW8FTSK: An attempt to obtain the DFSMStvs latch in the TMIB failure

6F4C110D IGW8FTSK: An attempt to release the DFSMStvs latch in the TMIB failure

6F4C1113 IGW8FTSK: Convert to ESTAE failure

6F4C1114 IGW8FTSK: Convert to FRR failure

6F4C111A IGW8FTSK: Front end processing received an error while attempting to generate a
message

6F4C1141 IGW8FTSK: Front end processing received an error while attempting to generate
message IGW10074I

6F4C1149 IGW8FTSK: Unexpected error

Message processing reason codes
Message processing reason codes

Reason Code Description

6F291030 IGW8XMSG: Free MDTA failure

6F291031 IGW8XMSG: Convert to ESTAE failure

6F291032 IGW8XMSG: Convert to FRR failure

6F291035 IGW8XMSG: Invalid function requested

6F291036 IGW8XMSG: Invalid function requested

6F291078 IGW8XMSG: Console message GETMAIN failure

6F291079 IGW8XMSG: Job log message GETMAIN failure

Programming applications to use DVSMStvs

236 z/OS: z/OS DFSMStvs Administration Guide

Message processing reason codes (continued)

Reason Code Description

6F29107A IGW8XMSG: Console message segment GETMAIN failure

6F29107B IGW8XMSG: Job log message segment GETMAIN failure

6F29107C IGW8XMSG: Console message FREEMAIN failure

6F29107D IGW8XMSG: Job log message FREEMAIN failure

6F29107E IGW8XMSG: Console message segment FREEMAIN failure

6F29107F IGW8XMSG: Job log message segment FREEMAIN failure

6F291091 IGW8XMSG: Hard copy message FREEMAIN failure

6F291092 IGW8XMSG: Hard copy message GETMAIN failure

6F291093 IGW8XMSG: Hard copy message segment FREEMAIN failure

6F291094 IGW8XMSG: Hard copy message segment GETMAIN failure

Quiesce reason codes
Quiesce reason codes

Reason Code Description

6F2D16F6 Generate message failure (module IGW8QPOP)

6F2D16F7 Convert to Frr failure (module IGW8QPOP)

6F2D16F8 Convert to ESTAE failure (module IGW8QPOP)

6F2D16FF Get TMIB failure (module IGW8QPOP)

6F2E16E6 Quiesce received an incorrect IFGQUIES parameter block from RLS (module
IGW8QEXP)

6F2E16F4 Quiesce received a data set quiesce request from RLS and the data set name was not
specified (module IGW8QEXP)

6F2E16F5 Quiesce was unable to obtain an QEXT from the QEXT storage pool (module
IGW8QEXP)

6F2E16F6 Quiesce received an error while attempting to issue a message (module IGW8QEXP)

6F2E16F7 Quiesce detected an error while converting from ESTAE to FRR (module IGW8QEXP)

6F2E16F8 Quiesce detected an error while converting from FRR to ESTAE (module IGW8QEXP)

6F2E16F9 Quiesce attempted to release the TOBH latch and received an error (module
IGW8QEXP)

6F2E16FA Quiesce attempted to obtain the TOBH latch and received an error (module
IGW8QEXP)

6F2E16FB Quiesce attempted to release the TMIB latch and received an error (module
IGW8QEXP)

6F2E16FC Quiesce attempted to obtain the TMIB latch and received an error (module IGW8QEXP)

6F2E16FF Quiesce attempted to extract the token for the TMIB and received an error (module
IGW8QEXP)

6F2F16E8 Quiesce was unable to return a QEXT to the QEXT storage pool (module IGW8QEXT)

6F2F16EE Quiesce was unable to write a tie up record to the forward recovery log (module
IGW8QEXT)

6F2F16EF Quiesce attempted to issue an SQM submit of a task and detected an error (module
IGW8QEXT)

6F2F16F5 Quiesce was unable to obtain a QEXT from the QEXT storage pool (module IGW8QEXT)

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 237

Quiesce reason codes (continued)

Reason Code Description

6F2F16F6 Quiesce detected an error while attempting to issue a message (module IGW8QEXT)

6F2F16F7 Quiesce detected an error while converting from ESTAE to FRR (module IGW8QEXT)

6F2F16F8 Quiesce detected an error while converting from FRR to ESTAE (module IGW8QEXT)

6F2F16F9 Quiesce attempted to release the TOBH latch and received an error (module
IGW8QEXT)

6F2F16FA Quiesce attempted to obtain the TOBH latch and received an error (module IGW8QEXT)

6F2F16FB Quiesce attempted to release the TMIB latch and received an error (module
IGW8QEXT)

6F2F16FC Quiesce attempted to obtain the TMIB latch and received an error (module IGW8QEXT)

6F2F16FF Quiesce attempted to extract the token for the TMIB and received an error (module
IGW8QEXT)

6F3016DC Release TOBHX chain latch failure (module IGW8QEXR)

6F3016DD Get TOBHX chain latch failure (module IGW8QEXR)

6F3016DE Release QEXT chain latch failure (module IGW8QEXR)

6F3016DF Get QEXT chain latch failure (module IGW8QEXR)

6F3016E7 Quiesce attempted to obtain an IFGQUIES from the IFGQUIES storage pool and
received an error (module IGW8QEXR)

6F3016E8 Quiesce attempted to return a QEXT to the QEXT storage pool and received an error
(module IGW8QEXR)

6F3016E9 Quiesce attempted to return an IFGQUIES to the IFGQUIES storage pool and received
an error (module IGW8QEXR)

6F3016EA Quiesce attempted to issue an IDAQUIES and received an error (module IGW8QEXR)

6F3016F6 Quiesce received an error while attempting to issue a message (module IGW8QEXR)

6F3016F7 Quiesce detected an error while converting from ESTAE to FRR (module IGW8QEXR)

6F3016F8 Quiesce detected an error while converting from FRR to ESTAE (module IGW8QEXR)

6F3016FF Quiesce attempted to extract the token for the TMIB and received an error (module
IGW8QEXR)

6F5116E2 Call retry shunt failure (module IGW8QSHN)

6F5116E3 Release shunt chain latch failure (module IGW8QSHN)

6F5116E4 Get shunt chain latch failure (module IGW8QSHN)

6F5116E5 Get a IGWQWRK from the free pool failure (module IGW8QSHN)

6F5116F6 Issue a message failure (module IGW8QSHN)

6F5116F7 Convert to FRR failure (module IGW8QSHN)

6F5116F8 Convert to ESTAE failure (module IGW8QSHN)

6F5116FB Release the TMIB latch failure (module IGW8QSHN)

6F5116FC Get the TMIB latch failure (module IGW8QSHN)

6F5116FF Obtain a TMIB failure (module IGW8QSHN)

Programming applications to use DVSMStvs

238 z/OS: z/OS DFSMStvs Administration Guide

Shunt processing reason codes
Shunt processing reason codes

Reason Code Description

5F491701 IGW8SLUC: Generate message failure

5F491710 IGW8SLUC: Extract TMIB failure

5F491719 IGW8SLUC: Convert to FRR failure

5F49171A IGW8SLUC: Convert to ESTAE failure

5F49171D IGW8SLUC: Obtain TMIB latch failure

5F49171E IGW8SLUC: Release TMIB latch failure

5F491725 IGW8SLUC: Invalid BTREE token failure

5F491726 IGW8SLUC: Obtain shunt latch failure

5F491727 IGW8SLUC: Release shunt latch failure

5F491733 IGW8SLUC: Obtain command latch failure

5F491734 IGW8SLUC: Release command latch failure

6F2B1205 IGW8SLUD: Obtain curb latch failure

6F2B1206 IGW8SLUD: Release curb latch failure

6F2B1289 IGW8SLUD: Obtain curb chain latch failure

6F2B128A IGW8SLUD: Release curb chain latch failure

6F2B1823 IGW8SLUD: Invalid B-tree token failure

6F2B182C IGW8SLUD: Obtain in-doubt latch failure

6F2B182D IGW8SLUD: Release in-doubt latch failure

6F2B182F IGW8SLUD: Tree add failure

6F2B1833 IGW8SLUD: Obtain shunt latch failure

6F2B1834 IGW8SLUD: Release shunt latch failure

6F2B1836 IGW8SLUD: End browse failure

6F2B183B IGW8SLUD: Obtain restart latch failure

6F2B183C IGW8SLUD: Release restart latch failure

6F2B183F IGW8SLUD: Indeterminate failure

6F431800 IGW8SRBC: Convert to ESTAE failure

6F431801 IGW8SRBC: Convert to FRR failure

6F431802 IGW8SRBC: Find failure

6F431803 IGW8SRBC: Invalid BTREE token failure

6F431804 IGW8SRBC: Overflow of local TDSL failure

6F431805 IGW8SRBC: Read undo log failure

6F431806 IGW8SRBC: SMLS end transaction failure

6F431807 IGW8SRBC: SMLS mark keep failure

6F431808 IGW8SRBC: Start browse failure

6F431809 IGW8SRBC: Write ATRLR failure

6F43180A IGW8SRBC: Write DSN failure

6F43180B IGW8SRBC: Zero log token failure

6F43180C IGW8SRBC: Obtain TVS latch failure

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 239

Shunt processing reason codes (continued)

Reason Code Description

6F43180D IGW8SRBC: Release TVS latch failure

6F43180E IGW8SRBC: Free block failure

6F43180F IGW8SRBC: Tree add failure

6F431810 IGW8SRBC: Locate volser CCHH failure

6F431811 IGW8SRBC: ATRL present failure

6F431812 IGW8SRBC: Obtain shunt latch failure

6F431813 IGW8SRBC: Release shunt latch failure

6F431814 IGW8SRBC: SQM submit failure

6F431815 IGW8SRBC: End browse failure

6F431816 IGW8SRBC: Nullify curb latch failure

6F431817 IGW8SRBC: Invalid log record failure

6F431818 IGW8SRBC: Obtain in-doubt latch failure

6F431819 IGW8SRBC: Release in-doubt latch failure

6F43181F IGW8SRBC: Indeterminate failure

6F441820 IGW8SRUR: Convert to ESTAE failure

6F441821 IGW8SRUR: Convert to FRR failure

6F441822 IGW8SRUR: Find failure

6F441823 IGW8SRUR: Invalid BTREE token failure

6F441824 IGW8SRUR: Overflow of local TDSL failure

6F441825 IGW8SRUR: Read undo log failure

6F441826 IGW8SRUR: SMLS end transaction failure

6F441827 IGW8SRUR: SMLS mark keep failure

6F441828 IGW8SRUR: Start browse failure

6F441829 IGW8SRUR: Write ATRLR failure

6F44182A IGW8SRUR: Write DSN failure

6F44182B IGW8SRUR: Zero log token failure

6F44182C IGW8SRUR: Obtain TVS latch failure

6F44182D IGW8SRUR: Release TVS latch failure

6F44182E IGW8SRUR: Free block failure

6F44182F IGW8SRUR: Tree add failure

6F441830 IGW8SRUR: Locate volser CCHH failure

6F441831 IGW8SRUR: No active data sets failure

6F441832 IGW8SRUR: ATRL present failure

6F441833 IGW8SRUR: Obtain shunt latch failure

6F441834 IGW8SRUR: Release shunt latch failure

6F441835 IGW8SRUR: SQM submit fFailure

6F441836 IGW8SRUR: End browse Ffailure

6F441837 IGW8SRUR: Nullify curb latch failure

6F441838 IGW8SRUR: Obtain in-doubt latch failure

Programming applications to use DVSMStvs

240 z/OS: z/OS DFSMStvs Administration Guide

Shunt processing reason codes (continued)

Reason Code Description

6F441839 IGW8SRUR: Release in-doubt latch failure

6F44183A IGW8SRUR: Invalid log record failure

6F44183F IGW8SRUR: Indeterminate failure

6F451860 IGW8SPBC: Convert to ESTAE failure

6F451861 IGW8SPBC: Convert to FRR failure

6F451862 IGW8SPBC: Invalid B tree token failure

6F451863 IGW8SPBC: Overflow of local TDSL failure

6F451864 IGW8SPBC: Read undo log failure

6F451865 IGW8SPBC: SMLS end transaction failure

6F451866 IGW8SPBC: SMLS mark keep failure

6F451867 IGW8SPBC: Write ATRLR failure

6F451868 IGW8SPBC: Write DSN failure

6F451869 IGW8SPBC: ATRLR present failure

6F45186A IGW8SPBC: Obtain TVS latch failure

6F45186B IGW8SPBC: Release TVS latch failure

6F45186C IGW8SPBC: Free block failure

6F45186D IGW8SPBC: Tree add failure

6F45186E IGW8SPBC: Locate volser CCHH failure

6F45186F IGW8SPBC: Obtain shunt latch failure

6F451870 IGW8SPBC: Release shunt latch failure

6F451871 IGW8SPBC: SQM submit failure

6F451872 IGW8SPBC: Obtain in-doubt latch failure

6F451873 IGW8SPBC: Release in-doubt latch failure

6F451874 IGW8SPBC: Nullify curb latch failure

6F45187F IGW8SPBC: Indeterminate failure

6F461840 IGW8SPUR: Convert to ESTAE failure

6F461841 IGW8SPUR: Convert to FRR failure

6F461842 IGW8SPUR: B tree token not valid failure

6F461843 IGW8SPUR: Overflow of local TDSL failure

6F461844 IGW8SPUR: SMLS end transaction failure

6F461845 IGW8SPUR: Write ATRLR failure

6F461846 IGW8SPUR: Obtain TVS latch failure

6F461847 IGW8SPUR: Release TVS latch failure

6F461848 IGW8SPUR: Free block failure

6F461849 IGW8SPUR: Tree add failure

6F46184A IGW8SPUR: Locate volser CCHH failure

6F46184B IGW8SPUR: SMLS reset subsystem failure

6F46184C IGW8SPUR: Obtain shunt latch failure

6F46184D IGW8SPUR: Release shunt latch failure

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 241

Shunt processing reason codes (continued)

Reason Code Description

6F46184E IGW8SPUR: SQM submit failure

6F46184F IGW8SPUR: Obtain in-doubt latch failure

6F461850 IGW8SPUR: Release in-doubt latch failure

6F461851 IGW8SPUR: Nullify curb latch failure

6F46185F IGW8SPUR: Indeterminate failure

6F471701 IGW8SLBC: Generate message failure

6F471710 IGW8SLBC: Extract TMIB failure

6F471719 IGW8SLBC: Convert to FRR failure

6F47171A IGW8SLBC: Convert to ESTAE failure

6F47171D IGW8SLBC: Obtain TMIB latch failure

6F47171E IGW8SLBC: Release TMIB latch failure

6F471724 IGW8SLBC: Tree add failure

6F471725 IGW8SLBC: Invalid BTREE token failure

6F471726 IGW8SLBC: Obtain shunt latch failure

6F471727 IGW8SLBC: Release shunt latch failure

6F471733 IGW8SLBC: Obtain command latch failure

6F471734 IGW8SLBC: Release command latch failure

6F481701 IGW8SLUR: Generate message failure

6F481710 IGW8SLUR: Extract TMIB failure

6F481719 IGW8SLUR: Convert to FRR failure

6F48171A IGW8SLUR: Convert to ESTAE failure

6F48171D IGW8SLUR: Obtain TMIB latch failure

6F48171E IGW8SLUR: Release TMIB latch failure

6F481724 IGW8SLUR: Tree add failure

6F481725 IGW8SLUR: Invalid BTREE token failure

6F481726 IGW8SLUR: Obtain shunt latch failure

6F481727 IGW8SLUR: Release shunt latch failure

6F481733 IGW8SLUR: Obtain command latch failure

6F481734 IGW8SLUR: Release command latch failure

6F631289 IGW8RDSN: Obtain chain latch failure

6F63128A IGW8RDSN: Release chain latch failure

6F63133B IGW8RDSN: Build a curb failure

6F631340 IGW8RDSN: Obtain shunt latch failure

6F631341 IGW8RDSN: Release shunt latch failure

6F631342 IGW8RDSN: Obtain curb latch failure

6F631343 IGW8RDSN: Release curb latch failure

6F63134F IGW8RDSN: Indeterminate failure

6F63141D IGW8RDSN: Get block failure

6F631422 IGW8RDSN: Shunt curb integrity failure

Programming applications to use DVSMStvs

242 z/OS: z/OS DFSMStvs Administration Guide

Shunt processing reason codes (continued)

Reason Code Description

6F631426 IGW8RDSN: Initialize curb latch failure

6F63142C IGW8RDSN: Initialize endreq close latch

6F631446 IGW8RDSN: FREEMAIN arguments failure

6F631464 IGW8RDSN: Suspend failure

6F631465 IGW8RDSN: PurgeDq failure

Restart reason codes
Restart reason codes

Reason Code Description

6F031220 IGW8RRES: Restart chain failure

6F031221 IGW8RRES: Shunt chain failure

6F031222 IGW8RRES: Indoubt chain failure

6F031223 IGW8RRES: Shunt curb integrity failure

6F031224 IGW8RRES: Obtain tobhx latch failure

6F031225 IGW8RRES: Release tobhx latch failure

6F031226 IGW8RRES: Obtain restart curb latch failure

6F031227 IGW8RRES: Release restart curb latch failure

6F031228 IGW8RRES: Obtain TVS latch failure

6F031229 IGW8RRES: Release TVS latch failure

6F03122A IGW8RRES: Obtain shunt latch failure

6F03122B IGW8RRES: Release shunt latch failure

6F03122C IGW8RRES: Obtain in-doubt latch failure

6F03122D IGW8RRES: Release in-doubt latch failure

6F03122E IGW8RRES: Obtain curb latch failure

6F03122F IGW8RRES: Release curb latch failure

6F031230 IGW8RRES: SMLS end transaction failure

6F031231 IGW8RRES: Destroy chain failure

6F031232 IGW8RRES: Call ATRIRRI failure

6F031233 IGW8RRES: Write ATRL failure

6F031234 IGW8RRES: Convert to ESTAE failure

6F031235 IGW8RRES: Convert to FRR failure

6F031236 IGW8RRES: GETMAIN argument list failure

6F031237 IGW8RRES: Free block failure

6F031238 IGW8RRES: SQM create instance failure

6F031239 IGW8RRES: SQM submit failure

6F03123A IGW8RRES: Quiesce failure

6F03123B IGW8RRES: Nullify curb latch failure

6F03123C IGW8RRES: VP GETMAIN arguments failure

6F03123D IGW8RRES: Vary SQM submit failure

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 243

Restart reason codes (continued)

Reason Code Description

6F031244 IGW8RRES: Indeterminate failure

6F40125A IGW8RRTS: SMLS end transaction failure

6F40125B IGW8RRTS: Destroy chain failure

6F40125C IGW8RRTS: Call ATRIRRI failure

6F40125D IGW8RRTS: Write ATRLR failure

6F40125E IGW8RRTS: FREEMAIN arguments failure

6F40125F IGW8RRTS: Convert to ESTAE failure

6F401260 IGW8RRTS: Convert to FRR failure

6F401261 IGW8RRTS: Release TVS latch failure

6F401262 IGW8RRTS: Obtain TVS latch failure

6F401263 IGW8RRTS: Release restart latch failure

6F401264 IGW8RRTS: Free block failure

6F401265 IGW8RRTS: Data set name match failure

6F401266 IGW8RRTS: Release shunt latch failure

6F401267 IGW8RRTS: Obtain shunt latch failure

6F401268 IGW8RRTS: IGW8RCHN failure

6F401269 IGW8RRTS: Force redo log failure

6F40126A IGW8RRTS: system error failure

6F40126B IGW8RRTS: Invalid tdsl failure

6F40126C IGW8RRTS: Release curb latch failure

6F40126D IGW8RRTS: Obtain curb latch failure

6F40126E IGW8RRTS: Write force failure

6F40126F IGW8RRTS: Shunt curb integrity failure

6F401274 IGW8RRTS: Indeterminate failure

Peer recovery reason codes
Peer recovery reason codes

Reason Code Description

6F1F18C0 IGW8PCLN: LaterAbendFailure

6F5B1018 IGW8PIN1: ACB_Pool_failure

6F5B101A IGW8PIN1: ConvertToEstae failure

6F5B1019 IGW8PIN1: ConvertToFrr failure

6F5B1004 IGW8PIN1: CURB_Pool failure

6F5B101B IGW8PIN1: GetmainArgs failure

6F5B1000 IGW8PIN1: GetmainPeerTmib failure

6F5B108E IGW8PIN1: GetmainPeerTmibY failure

6F5B10C8 IGW8PIN1: Init_RestartChainLatch failure

6F5B10D4 IGW8PIN1: Initial_CurrentLatch failure

6F5B1098 IGW8PIN1: Initial_IgwLogsLatch failure

Programming applications to use DVSMStvs

244 z/OS: z/OS DFSMStvs Administration Guide

Peer recovery reason codes (continued)

Reason Code Description

6F5B1077 IGW8PIN1: Initial_InDoubtLatch failure

6F5B1073 IGW8PIN1: Initial_SHUNTLatch failure

6F5B1002 IGW8PIN1: InitSQMCreate failure

6F5B1003 IGW8PIN1: InitSQMSubmit failure

6F5B1055 IGW8PIN1: Logs_Pool failure

6F5B1029 IGW8PIN1: Mdta_Pool_failure

6F5B10EC IGW8PIN1: NCRB_Pool failure

6F5B10B0 IGW8PIN1: ObtainPeerChainLatch failure

6F5B101D IGW8PIN1: ObtainTmibLatch failure

6F5B10B1 IGW8PIN1: ReleasePeerChainLatch failure

6F5B101E IGW8PIN1: ReleaseTmibLatch failure

6F5B1016 IGW8PIN1: Tdsl_Pool failure

6F5B1023 IGW8PIN1: Tmib_ExtractToken failure

6F5B1012 IGW8PIN1: Tobe_Pool failure

6F5B1013 IGW8PIN1: Tobh_Pool failure

6F5C101A IGW8PIN2: ConvertToEstae_Failure failure

6F5C1019 IGW8PIN2: ConvertToFrr failure

6F5C10B7 IGW8PIN2: DiscLogofLogs failure

6F5C10B6 IGW8PIN2: FreeACBPool failure

6F5C1092 IGW8PIN2: FreeCurbBlock failure

6F5C10A1 IGW8PIN2: FreeCurbPool failure

6F5C10A8 IGW8PIN2: FreeLogsPool failure

6F5C108F IGW8PIN2: FreemainPeerTmib failure

6F5C1090 IGW8PIN2: FreemainPeerTmibY failure

6F5C10A2 IGW8PIN2: FreeMdtaPool failure

6F5C1067 IGW8PIN2: FreeTdslBlock failure

6F5C10A0 IGW8PIN2: FreeTdslPool failure

6F5C10A3 IGW8PIN2: FreeTobePool failure

6F5C10A4 IGW8PIN2: FreeTobhPool failure

6F5C10AC IGW8PIN2: LogofLogsQuiesce failure

6F5C10DC IGW8PIN2: NULL_RestartChainLatch failure

6F5C10E7 IGW8PIN2: Nullify_CECLatch failure

6F5C10E8 IGW8PIN2: Nullify_CurbLatch failure

6F5C10DA IGW8PIN2: NULLIFY_CurrentLatch failure

6F5C10E2 IGW8PIN2: NULLIFY_IgwLogsLatch failure

6F5C10D8 IGW8PIN2: NULLIFY_InDoubtLatch failure

6F5C10DE IGW8PIN2: NULLIFY_SHUNTLatch failure

6F5C10C2 IGW8PIN2: ObtainPeerChainLatch failure

6F5C10F3 IGW8PIN2: ObtainSharedLatch failure

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 245

Peer recovery reason codes (continued)

Reason Code Description

6F5C101D IGW8PIN2: ObtainTmibLatch failure

6F5C10D9 IGW8PIN2: OBTC_CurrentLatch failure

6F5C10E1 IGW8PIN2: OBTC_IgwLogsLatch failure

6F5C10D7 IGW8PIN2: OBTC_InDoubtLatch failure

6F5C10DB IGW8PIN2: OBTC_RestartChainLatch failure

6F5C10DD IGW8PIN2: OBTC_SHUNTLatch failure

6F5C10F5 IGW8PIN2: PrepareSharedLatch failure

6F5C10B1 IGW8PIN2: ReleasePeerChainLatch failure

6F5C10F4 IGW8PIN2: ReleaseSharedLatch failure

6F5C101E IGW8PIN2: ReleaseTmibLatch failure

6F5C1005 IGW8PIN2: shcds_Connect failure

6F5C1089 IGW8PIN2: ShuntLogQuiesce_failure

6F5C1008 IGW8PIN2: SMLS_IdSubsys failure

6F5C10BA IGW8PIN2: SMLSUnidentify failure

6F5C10D1 IGW8PIN2: TLSPeerTerminate failure

6F5C108A IGW8PIN2: TVSQuiesce failure

6F5C1088 IGW8PIN2: UndoLogQuiesce failure

Syncpoint reason codes
Syncpoint reason codes

Reason Code Description

6F551700 IGW8RFRR: Kill user address space

6F2A137F IGW8ROAE: Indeterminate failure

6F421470 IGW8RRMC: Convert to ESTAE failure

6F421471 IGW8RRMC: Convert to FRR failure

6F421476 IGW8RRMC: FREEMAIN failure

6F421472 IGW8RRMC: GETMAIN LR failure

6F421475 IGW8RRMC: VRM failure

6F5613F2 IGW8RSCH: Extract TMIB failure

6F5613F0 IGW8RSCH: Extract VRGB failure

6F5613F1 IGW8RSCH: Get block failure

6F5612F5 IGW8RSCH: LRR curb not valid

6F5612F3 IGW8RSCH: Suspend failure

6F5612FF IGW8RSCH: Unexpected error

6F5418E2 IGW8RSR1: Curb not valid

6F5418E6 IGW8RSR1: Extract VRGB failure

6F5418E0 IGW8RSR1: IDAVRARR abnormally ending

6F5418E7 IGW8RSR1: Caller not valid

6F5418E1 IGW8RSR1: No curb pointer

Programming applications to use DVSMStvs

246 z/OS: z/OS DFSMStvs Administration Guide

Syncpoint reason codes (continued)

Reason Code Description

6F5418E4 IGW8RSR1: Resume failure

6F5418E5 IGW8RSR1: Server recycled

6F5418EF IGW8RSR1: Unexpected error

6F5418E3 IGW8RSR1: Zero suspend

6F6013E9 IGW8RSR2: Curb not valid

6F6013E6 IGW8RSR2: Extract VRGB failure

6F6013EA IGW8RSR2: GETMAIN failed

6F6013E4 IGW8RSR2: IGW8RFRR end server

6F6013E5 IGW8RSR2: No curb pointer from IDAVRFRR

6F6013E1 IGW8RSR2: No curb pointer from IGW8RSRB

6F6013E7 IGW8RSR2: Server recycled

6F6013E0 IGW8RSR2: TCB token failure

6F6013EE IGW8RSR2: Unexpected error

6F6013E8 IGW8RSR2: Zero suspend

6F6113DF IGW8RSR3: Resume failure

6F6113E3 IGW8RSR3: Resume SR3 failure

6F6113DE IGW8RSR3: Suspend failure

6F6113EF IGW8RSR3: Unexpected error

6F6218F1 IGW8RSR4: FREEMAIN failure

6F6218F0 IGW8RSR4: Resume failure

6F6218FF IGW8RSR4: Unexpected error

6F1D146A IGW8RVTV: GETMAIN arguments failure

6F1D146F IGW8RVTV: Indeterminate failure

6F1D146B IGW8RVTV: Vary SQM submit failure

6F0C1200 IGW8RPRP: GETMAIN argument list failure

6F0C1201 IGW8RPRP: SQM submit failure

6F0C1202 IGW8RPRP: Convert to ESTAE failure

6F0C1203 IGW8RPRP: Convert to FRR failure

6F0C1204 IGW8RPRP: Generate message failure

6F0C1205 IGW8RPRP: Obtain TVS latch failure

6F0C1206 IGW8RPRP: Release TVS latch failure

6F0C1207 IGW8RPRP: FREEMAIN argument list failure

6F0C1208 IGW8RPRP: Indeterminate failure (0C4, and so on)

6F0C1209 IGW8RPRP: S token extract failure

6F0C120A IGW8RPRP: Bad VTLB eyecatcher failure

6F0D1211 IGW8RPR1: RPL chain failure

6F0D1212 IGW8RPR1: Force redo log failure

6F0D1213 IGW8RPR1: Obtain TVS latch failure

6F0D1214 IGW8RPR1: Release TVS latch failure

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 247

Syncpoint reason codes (continued)

Reason Code Description

6F0D1215 IGW8RPR1: Convert to ESTAE failure

6F0D1216 IGW8RPR1: Convert to FRR failure

6F0D1217 IGW8RPR1: Generate message failure

6F0D1218 IGW8RPR1: FREEMAIN argument list failure

6F0D1219 IGW8RPR1: ATR failure

6F0D121A IGW8RPR1: Indeterminate failure (0C4, and so on)

6F0E1300 IGW8RCMT: GETMAIN arguments failure

6F0E1301 IGW8RCMT: SQM submit failure

6F0E1302 IGW8RCMT: Convert to ESTAE failure

6F0E1303 IGW8RCMT: Convert to FRR failure

6F0E1304 IGW8RCMT: Generate message failure

6F0E1305 IGW8RCMT: Obtain TVS latch failure

6F0E1306 IGW8RCMT: Release TVS latch failure

6F0E1310 IGW8RCMT: FREEMAIN arguments failure

6F0E1311 IGW8RCMT: Indeterminate failure

6F0F1320 IGW8RCMS: Convert to FRR failure

6F0F1321 IGW8RCMS: Convert to ESTAE failure

6F0F1322 IGW8RCMS: Generate message failure

6F0F1323 IGW8RCMS: Free block failure

6F0F1324 IGW8RCMS: FREEMAIN arguments failure

6F0F1325 IGW8RCMS: SMLS mark keep failure

6F0F1326 IGW8RCMS: SMLS end transaction failure

6F0F1327 IGW8RCMS: VRM failure

6F0F1328 IGW8RCMS: Read undo log failure

6F0F1329 IGW8RCMS: VRM logical failure

6F0F1330 IGW8RCMS: Write ATRLR failure

6F0F1331 IGW8RCMS: Obtain TVS latch failure

6F0F1332 IGW8RCMS: Release TVS latch failure

6F0F1335 IGW8RCMS: SHCDS disconnect Failure

6F0F1336 IGW8RCMS: Resource recovery services (RRS) environment failure

6F0F1337 IGW8RCMS: SQM submit failure

6F0F1338 IGW8RCMS: TVS quiesce failure

6F0F133A IGW8RCMS: Shunt log quiesce failure

6F0F133B IGW8RCMS: Build a curb failure

6F0F133C IGW8RCMS: CRGDRM failure

6F0F133D IGW8RCMS: SMLS unidentify subsystem failure

6F0F133E IGW8RCMS: Undolog disconnect failure

6F0F133F IGW8RCMS: Quiesce failure

6F0F1340 IGW8RCMS: Obtain shunt latch failure

Programming applications to use DVSMStvs

248 z/OS: z/OS DFSMStvs Administration Guide

Syncpoint reason codes (continued)

Reason Code Description

6F0F1341 IGW8RCMS: Release shunt latch failure

6F0F1342 IGW8RCMS: Obtain curb latch failure

6F0F1343 IGW8RCMS: Release curb latch failure

6F0F134F IGW8RCMS: Indeterminate failure

6F4D1880 IGW8RCID: SMLS mark keep failure

6F4D1881 IGW8RCID: SMLS end transaction failure

6F4D1882 IGW8RCID: Convert to ESTAE failure

6F4D1883 IGW8RCID: Convert to FRR failure

6F4D1884 IGW8RCID: Resource recovery services (RRS) environment failure

6F4D1885 IGW8RCID: FREEMAIN arguments failure

6F4D1886 IGW8RCID: Obtain TVS latch failure

6F4D1887 IGW8RCID: Release TVS latch failure

6F4D1888 IGW8RCID: Obtain in-doubt latch failure

6F4D1889 IGW8RCID: Release in-doubt latch failure

6F4D188A IGW8RCID: Obtain shunt latch failure

6F4D188B IGW8RCID: Release shunt latch failure

6F4D188C IGW8RCID: SQM submit failure

6F4D188D IGW8RCID: SHCDS connect failure

6F4D188E IGW8RCID: SHCDS disconnect failure

6F4D188F IGW8RCID: SHCDS add line failure

6F4D1890 IGW8RCID: Free block failure

6F4D1891 IGW8RCID: Obtain curb latch failure

6F4D1892 IGW8RCID: Release curb latch failure

6F4D1893 IGW8RCID: Nullify curb latch failure

6F4D189F IGW8RCID: Indeterminate failure

6F101441 IGW8RBOU: Convert to ESTAE failure

6F101442 IGW8RBOU: Convert to FRR failure

6F101443 IGW8RBOU: SQM submit failure

6F101444 IGW8RBOU: Obtain TVS latch failure

6F101445 IGW8RBOU: Release TVS latch failure

6F101446 IGW8RBOU: FREEMAIN arguments failure

6F101447 IGW8RBOU: GETMAIN arguments failure

6F101448 IGW8RBOU: Indeterminate failure

6F101449 IGW8RBOU: Stoken extract failure

6F10144A IGW8RBOU: Bad VTLB eye-catcher failure

6F121450 IGW8RBOS: RPL chain failure

6F121451 IGW8RBOS: Force redolog failure

6F121452 IGW8RBOS: Generate message failure

6F121453 IGW8RBOS: FREEMAIN arguments failure

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 249

Syncpoint reason codes (continued)

Reason Code Description

6F121454 IGW8RBOS: Convert to ESTAE failure

6F121455 IGW8RBOS: Convert to FRR failure

6F121456 IGW8RBOS: Free block failure

6F121457 IGW8RBOS: ATR failure

6F121458 IGW8RBOS: Release TVS latch failure

6F121459 IGW8RBOS: Obtain TVS latch failure

6F12145A IGW8RBOS: SQM submit failure

6F12145B IGW8RBOS: TVS quiesce failure

6F12145C IGW8RBOS: Undolog quiesce failure

6F12145D IGW8RBOS: Shunt log quiesce failure

6F12145E IGW8RBOS: CRGDRM failure

6F12145F IGW8RBOS: SMLS unidentify subsystem failure

6F121460 IGW8RBOS: Undolog disconnect failure

6F121461 IGW8RBOS: Quiesce failure

6F121462 IGW8RBOS: Obtain curb latch failure

6F121463 IGW8RBOS: Release curb latch failure

6F121464 IGW8RBOS: Suspend failure

6F121465 IGW8RBOS: Purge deq failure

6F12146F IGW8RBOS: Indeterminate failure

6F111400 IGW8RIOM: SMLS mark keep failure

6F111401 IGW8RIOM: SMLS end transaction failure

6F111402 IGW8RIOM: VRM failure

6F111403 IGW8RIOM: Read undolog failure

6F111404 IGW8RIOM: VRM logical failure

6F111405 IGW8RIOM: Write ATRLR failure

6F111407 IGW8RIOM: entry not found failure

6F111408 IGW8RIOM: Generate message failure

6F111409 IGW8RIOM: GETMAIN failure

6F11140A IGW8RIOM: FREEMAIN failure

6F111411 IGW8RIOM: Start browse failure

6F111412 IGW8RIOM: Entry not found failure

6F111413 IGW8RIOM: SMLS mark keep all failure

6F111414 IGW8RIOM: Write shunt failure

6F111415 IGW8RIOM: Get new curb failure

6F111416 IGW8RIOM: SHCDS connect failure

6F111417 IGW8RIOM: SHCDS disconnect failure

6F111418 IGW8RIOM: SHCDS add line failure

6F111419 IGW8RIOM: Convert to ESTAE failure

6F11141A IGW8RIOM: Convert to FRR failure

Programming applications to use DVSMStvs

250 z/OS: z/OS DFSMStvs Administration Guide

Syncpoint reason codes (continued)

Reason Code Description

6F11141B IGW8RIOM: Obtain TVS latch failure

6F11141C IGW8RIOM: Release TVS latch failure

6F11141D IGW8RIOM: Get block failure

6F11141E IGW8RIOM: Zero data set ACB failure

6F11141F IGW8RIOM: Obtain shunt latch failure

6F111420 IGW8RIOM: Release shunt latch failure

6F111421 IGW8RIOM: Free block failure

6F111422 IGW8RIOM: Shunt Curb integrity failure

6F111423 IGW8RIOM: Obtain in-doubt latch failure

6F111424 IGW8RIOM: Release in-doubt latch failure

6F111425 IGW8RIOM: End browse failure

6F111426 IGW8RIOM: Initialize curb latch failure

6F111427 IGW8RIOM: Obtain curb latch failure

6F111428 IGW8RIOM: Release curb latch failure

6F11142F IGW8RIOM: Indeterminate failure

6F271430 IGW8RCHN: Convert to FRR failure

6F271431 IGW8RCHN: Convert to ESTAE failure

6F271432 IGW8RCHN: VRM failure

6F271433 IGW8RCHN: RPL not unchained failure

6F271434 IGW8RCHN: Indeterminate failure

6F4E18A0 IGW8RBID: SMLS mark keep failure

6F4E18A1 IGW8RBID: SMLS end transaction failure

6F4E18A2 IGW8RBID: Convert to ESTAE failure

6F4E18A3 IGW8RBID: Convert to FRR failure

6F4E18A4 IGW8RBID: Resource recovery services (RRS) environment failure

6F4E18A5 IGW8RBID: FREEMAIN arguments failure

6F4E18A6 IGW8RBID: Obtain TVS latch failure

6F4E18A7 IGW8RBID: Release TVS latch failure

6F4E18A8 IGW8RBID: Obtain in-doubt latch failure

6F4E18A9 IGW8RBID: Release in-doubt latch failure

6F4E18AA IGW8RBID: Obtain shunt latch failure

6F4E18AB IGW8RBID: Release shunt latch failure

6F4E18AC IGW8RBID: SQM submit failure

6F4E18B0 IGW8RBID: Free block failure

6F4E18B1 IGW8RBID: Obtain curb latch failure

6F4E18B2 IGW8RBID: Release curb latch failure

6F4E18B3 IGW8RBID: Nullify curb latch failure

6F4E18BF IGW8RBID: Indeterminate failure

6F151245 IGW8ROP2: ACB pool failure

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 251

Syncpoint reason codes (continued)

Reason Code Description

6F151246 IGW8ROP2: Convert to ESTAE failure

6F151247 IGW8ROP2: Convert to FRR failure

6F151248 IGW8ROP2: Generate message failure

6F151249 IGW8ROP2: Free block failure

6F15124F IGW8ROP2: Indeterminate failure

6F161250 IGW8RCLS: Convert to ESTAE failure

6F161251 IGW8RCLS: Convert to FRR failure

6F161252 IGW8RCLS: Generate message failure

6F161253 IGW8RCLS: Free block failure

6F161259 IGW8RCLS: Indeterminate failure

Miscellaneous reason codes
Miscellaneous reason codes

Reason Code Description

6F191275 IGW8RNFY: Obtain TVS latch failure

6F191276 IGW8RNFY: Release TVS latch failure

6F191277 IGW8RNFY: Convert to ESTAE failure

6F191278 IGW8RNFY: Convert to FRR failure

6F191279 IGW8RNFY: Invalid exit manager failure

6F19127A IGW8RNFY: GETMAIN arguments failure

6F19127B IGW8RNFY: CTXEU requested failure

6F19127C IGW8RNFY: CTXEU bad return code failure

6F19127D IGW8RNFY: CTXEU exit failed failure

6F19127E IGW8RNFY: Resource recovery services (RRS) EU requested failure

6F19127F IGW8RNFY: Resource recovery services (RRS) EU bad return code failure

6F191280 IGW8RNFY: Resource recovery services (RRS) EU exit failed exit failed failure

6F191281 IGW8RNFY: CTX invalid pval1 failure

6F191282 IGW8RNFY: Resource recovery services (RRS) invalid pval1 failure

6F191283 IGW8RNFY: CTX invalid pval2 failure

6F191284 IGW8RNFY: RRS (resource recovery services) invalid pval2 failure

6F191285 IGW8RNFY: Invalid TMIB state failure

6F191286 IGW8RNFY: Init SQM submit failure

6F191287 IGW8RNFY: Free block failure

6F191288 IGW8RNFY: SMLS retain all locks failure

6F1912FF IGW8RNFY: Indeterminate failure

6F091350 IGW8RECE: Obtain TVS latch failure

6F091351 IGW8RECE: Release TVS latch failure

6F091352 IGW8RECE: End transaction failure

6F091353 IGW8RECE: Free tdsl block failure

Programming applications to use DVSMStvs

252 z/OS: z/OS DFSMStvs Administration Guide

Miscellaneous reason codes (continued)

Reason Code Description

6F091355 IGW8RECE: Mark keep failure

6F091356 IGW8RECE: Curb set token failure

6F091357 IGW8RECE: Free Curb block failure

6F091358 IGW8RECE: Obtain Curb latch failure

6F091359 IGW8RECE: Nullify Curb latch failure

6F091360 IGW8RECE: Release Curb latch failure

6F091361 IGW8RECE: Destroy chain failure

6F091362 IGW8RECE: Nonzero urid failure

6F09136F IGW8RECE: Indeterminate failure

6F4F1501 IGW8RAKP: AKP_CS_bad_1

6F4F1502 IGW8RAKP: AKP_CS_bad_2

6F4F1506 IGW8RAKP: chaintoken_zero_1

6F4F1507 IGW8RAKP: chaintoken_zero_2

6F4F150A IGW8RAKP: CreateChainFailure

6F4F1505 IGW8RAKP: DeleteHistoryFailure

6F4F1504 IGW8RAKP: DestroyChainFailure

6F4F150B IGW8RAKP: GetCurrentCurbChainLatchFailure

6F4F150B IGW8RAKP: GetrestartCurbChainLatchFailure

6F4F1509 IGW8RAKP: MoveChainFailure

6F4F1510 IGW8RAKP: ObtainCurbLatchFailure

6F4F1516 IGW8RAKP: ObtainIndoubtLatchFailure

6F4F1514 IGW8RAKP: ObtainShuntLatchFailure

6F4F150C IGW8RAKP: RelCurrentCurbChainLatchFailure

6F4F1511 IGW8RAKP: ReleaseCurbLatchFailure

6F4F1517 IGW8RAKP: ReleaseIndoubtLatchFailure

6F4F1515 IGW8RAKP: ReleaseShuntLatchFailure

6F4F150C IGW8RAKP: RelrestartCurbChainLatchFailure

6F4F1503 IGW8RAKP: SetHistoryFailure

6F4F1500 IGW8RAKP: TmibExtractFailure

6F4F151A IGW8RAKP: unexpected_error

6F4F1508 IGW8RAKP: WriteUNDOLogFailure

6F1B1383 IGW8RCEF: CTXEndCtxtExit_Failed

6F1B1384 IGW8RCEF: CTXEOMCtxtExit_Failed

6F1B1382 IGW8RCEF: CTXSwitchExit_Failed

6F1B138F IGW8RCEF: Indeterminate failure

6F1B1380 IGW8RCEF: Non-DFSMStvs exit value

6F1B1381 IGW8RCEF: Non-DFSMStvs reason value

6F501600 IGW8RCSE: Curb extract token failure

6F501602 IGW8RCSE: Curb set token failure 1

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 253

Miscellaneous reason codes (continued)

Reason Code Description

6F501603 IGW8RCSE: Curb set token failure 2

6F50160C IGW8RCSE: Curb set token failure 3

6F501609 IGW8RCSE: Delete context interest failure

6F50160A IGW8RCSE: Obtain restart latch failure

6F50160B IGW8RCSE: Release restart latch failure

6F501605 IGW8RCSE: S token extract failure

6F50160D IGW8RCSE: TMIB extract token failure 1

6F50160E IGW8RCSE: TMIB extract token failure 2

6F501601 IGW8RCSE: Token already set

6F501604 IGW8RCSE: Tokenc mismatch

6F501606 IGW8RCSE: T token extract failure

6F50160F IGW8RCSE: Unexpected error

6F5F16A3 IGW8RCS1: Curb set token failure 1

6F5F16A4 IGW8RCS1: Curb set token failure 2

6F5F16A2 IGW8RCS1: Unexpected error

6F0A1720 IGW8REOM: Resume failure

6F0A1721 IGW8REOM: Unexpected error

6F5E13D0 IGW8REOX: Get current curb chain latch failure

6F5E13D4 IGW8REOX: Obtain curb latch failure

6F5E13D1 IGW8REOX: Release current curb chain latch failure

6F5E13D5 IGW8REOX: Release curb latch failure

6F5E13D6 IGW8REOX: Resume failure

6F5E13CF IGW8REOX: Unexpected error

6F5E13CE IGW8REOX: Unknown caller

6F2318D0 IGW8RPC1: Indeterminate failure

6F2418D4 IGW8RPC2: Indeterminate failure

6F2518DA IGW8RPC3: Indeterminate failure

6F2518DB IGW8RPC3: Instance count mismatch

6F3C139F IGW8RREF: Indeterminate failure

6F3C139A IGW8RREF: Invalid Pval1 failure

6F3C139C IGW8RREF: Invalid Pval2 failure

6F3C139B IGW8RREF: Invalid RC failure

Logging reason code prefixes
Logging reason code prefixes

Module Reason code prefix Brief description

IGW9LING 7001 LOGGER INITIALIZATION

IGW9LWFG 7002 WRITE AND FORCE UNDO LOG

Programming applications to use DVSMStvs

254 z/OS: z/OS DFSMStvs Administration Guide

Logging reason code prefixes (continued)

Module Reason code prefix Brief description

IGW9LCBG 7003 CHAIN BROWSE

IGW9LCCG 7004 CHAIN CONTROL

IGW9LME1 7005 EXECUTE MESSAGE

IGW9LGLG 7006 GENERAL LOG GATE

IGW9LMVG 7007 MOVE CHAIN GATE

IGW9LBAG 7008 BROWSE ALL GATE

IGW9LDS1 7009 SRB STIMER MODULE

IGW9LREC 700A RECOVERY (CLEANUP) ROUTINE

DFHL2OFC 7065 DFHL2OFC MACRO

DFHL2VPC 7066 DFHL2VPC MACRO

DFHL2SYC 7067 DFHL2SYC MACRO

HCCKERN 7068 HCCKERN MACRO

IGWL2LMC 7069 LOCK MANAGER

IGW9LDSC 706A DISPATCHER CLASS

IGW9LBL1 70C8 BLOCK

IGW9LBL2 70C9 BLOCK

IGW9LBS1 70CA BROWSABLE STREAM

IGW9LBS2 70CB BROWSABLE STREAM

IGW9LBS3 70CC BROWSABLE STREAM

IGW9LBS4 70CD BROWSABLE STREAM

IGW9LCHA 70CE CHAIN

IGW9LCHE 70CF CHAIN

IGW9LCHG 70D0 CHAIN

IGW9LCHH 70D1 CHAIN

IGW9LCHI 70D2 CHAIN

IGW9LCHL 70D3 CHAIN

IGW9LCHM 70D4 CHAIN

IGW9LCHN 70D5 CHAIN

IGW9LCHO 70D6 CHAIN

IGW9LCHP 70D7 CHAIN

IGW9LCHR 70D8 CHAIN

IGW9LCHS 70D9 CHAIN

IGW9LCH1 70DA CHAIN

IGW9LCH2 70DB CHAIN

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 255

Logging reason code prefixes (continued)

Module Reason code prefix Brief description

IGW9LCH3 70DC CHAIN

IGW9LCH4 70DD CHAIN

IGW9LCH5 70DE CHAIN

IGW9LHSF 70DF HARD STREAM

IGW9LHSG 70E0 HARD STREAM

IGW9LHSJ 70E1 HARD STREAM

IGW9LHS2 70E2 HARD STREAM

IGW9LHS3 70E3 HARD STREAM

IGW9LHS4 70E4 HARD STREAM

IGW9LHS5 70E5 HARD STREAM

IGW9LHS6 70E6 HARD STREAM

IGW9LHS7 70E7 HARD STREAM

IGW9LHS8 70E8 HARD STREAM

IGW9LHS9 70E9 HARD STREAM

IGW9LSLE 70EA SYSTEM LOG

IGW9LSLN 70EB SYSTEM LOG

IGW9LSL1 70EC SYSTEM LOG

IGW9LSR1 70ED STREAM

IGW9LSR2 70EE STREAM

IGW9LSR3 70EF STREAM

IGW9LSR4 70F0 STREAM

IGW9LSR5 70F1 STREAM

Logging services reason codes
Logging services reason codes

Reason Code Description

70010001 IGW9LING: Initialize class failed

70010002 IGW9LING: GETMAIN failed

70010003 IGW9LING: IGWFTOKM SET failed

70010004 IGW9LING: LGA pointer is zero

70010005 IGW9LING: Primary log stream name is a required parameter

70010006 IGW9LING: Secondary log stream name is a required parameter

70010007 IGW9LING: Log of logs name is a required parameter

70010008 IGW9LING: Log of logs name is invalid

70010009 IGW9LING: Log of logs token is a required parameter

Programming applications to use DVSMStvs

256 z/OS: z/OS DFSMStvs Administration Guide

Logging services reason codes (continued)

Reason Code Description

7001000A IGW9LING: keypoint frequency is a required parameter

7001000B IGW9LING: IGWFTOKM EXTRACT failed

7001000C IGW9LING: Set keypoint frequency failed

7001000D IGW9LING: SQM CREATE failed

7001000E IGW9LING: Log of logs not defined

7001000F IGW9LING: Log of logs connect failure

70010010 IGW9LING: Unexpected log of logs connect return code

70010011 IGW9LING: Convert to ESTAE failed

70010012 IGW9LING: Convert to ESTAE failed

70010013 IGW9LING: Convert to FRR failed

70010014 IGW9LING: Convert to FRR failed

70010015 IGW9LING: Start type is a required parameter

70010016 IGW9LING: Connect to system logs failed

70010017 IGW9LING: IGWLSIXL failed

70010018 IGW9LING: APPLID is a required parameter

70020001 IGW9LWFG: An invalid function was requested

70020002 IGW9LWFG: Buffer is full

70020003 IGW9LWFG: Buffer length error

70020004 IGW9LWFG: Purged

70020005 IGW9LWFG: Unknown error

70020006 IGW9LWFG: IGWFTOKM failed

70020007 IGW9LWFG: Undo log record common section is a required parameter

70020008 IGW9LWFG: FORCE is a required parameter

70020009 IGW9LWFG: Not all parameters required for writing data were passed. A write
of data required a pointer, ALET, key, length, undo log record common area,
and undo log record data area

7002000A IGW9LWFG: Chain token is zero

7002000B IGW9LWFG: LGA pointer is zero

7002000C IGW9LWFG: SQM SUBMIT failed

7002000D IGW9LWFG: DFSMStvs terminated

7002000E IGW9LWFG: The undo log record common section has a bad eye-catcher

7002000F IGW9LWFG: The undo log is broken

70026908 IGW9LWFG: Latch purged and nullified

70030001 IGW9LCBG: An invalid function was requested

70030002 IGW9LCBG: End of data

70030003 IGW9LCBG: IGWFTOKM failed

70030004 IGW9LCBG: Data pointer is a required parameter

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 257

Logging services reason codes (continued)

Reason Code Description

70030005 IGW9LCBG: Data length is a required parameter

70030006 IGW9LCBG: Chain token is zero

70030007 IGW9LCBG: LGA pointer is zero

70030008 IGW9LCBG: DFSMStvs terminated

70030009 IGW9LCBG: Latch purged and nullified

7003000A IGW9LCBG: The undo log is broken

70040001 IGW9LCCG: An invalid function was requested

70040002 IGW9LCCG: IGWFTOKM failed

70040003 IGW9LCCG: No more chains

70040004 IGW9LCCG: User token is a required parameter

70040005 IGW9LCCG: Chain token is a required parameter

70040006 IGW9LCCG: Set keypoint failed

70040007 IGW9LCCG: Keypoint value is out of range

70040008 IGW9LCCG: Chain token is zero

70040009 IGW9LCCG: LGA pointer is zero

7004000A IGW9LCCG: The undo log is broken

7004000B IGW9LCCG: DFSMStvs terminated

70046908 IGW9LCCG: Latch purged and nullified

70050001 IGW9LME1: IGWFTOKM failed

70050002 IGW9LME1: LGA pointer is zero

70050003 IGW9LME1: The caller of execute message requested that the server be
terminated

70050004 IGW9LME1: The caller of execute message passed a message ID for which
there is no message support

70050005 IGW9LME1: One of the message inserts either has a zero length or a zero
address

70050006 IGW9LME1: A message insert is too long. Inserts are limited to 72 bytes long
(the length of a single line on the console)

70050007 IGW9LME1: A provided message insert is not supported. The insert was not
one of the expected inserts

70060001 IGW9LGLG: Log stream name is a required parameter for connect

70060002 IGW9LGLG: Log token is a required parameter for all functions but disconnect
syslogs

70060003 IGW9LGLG: Log token is zero

70060005 IGW9LGLG: FORCE is a required parameter for a write

70060006 IGW9LGLG: GLGP is a required parameter for a write

70060007 IGW9LGLG: GLGP array size is bad

70060008 IGW9LGLG: GLGP data length is zero

Programming applications to use DVSMStvs

258 z/OS: z/OS DFSMStvs Administration Guide

Logging services reason codes (continued)

Reason Code Description

70060009 IGW9LGLG: GLGP data pointer is zero

7006000A IGW9LGLG: LGA pointer is zero

7006000B IGW9LGLG: Log not defined on a connect request - unable to find specified log

7006000C IGW9LGLG: Connect request failed

7006000D IGW9LGLG: Unexpected connect return code from connect

70060001 IGW9LGLG: Log stream name is a required parameter for connect

70060002 IGW9LGLG: Log token is a required parameter for all functions but disconnect
syslogs

70060003 IGW9LGLG: Log token is zero

70060005 IGW9LGLG: FORCE is a required parameter for a write

70060006 IGW9LGLG: GLGP is a required parameter for a write

70060007 IGW9LGLG: GLGP array size is bad

70060008 IGW9LGLG: GLGP data length is zero

70060009 IGW9LGLG: GLGP data pointer is zero

7006000A IGW9LGLG: LGA pointer is zero

7006000B IGW9LGLG: Log not defined on a connect request - unable to find specified log

7006000C IGW9LGLG: Connect request failed

7006000D IGW9LGLG: Unexpected connect return code from connect

7006000E IGW9LGLG: Unexpected return code from disconnect

7006000F IGW9LGLG: Unexpected return code from write

70060010 IGW9LGLG: Unexpected return code from force

70060011 IGW9LGLG: A terminate request failed with an unexpected return code

70060012 IGW9LGLG: IGWFTOKM failed

70060013 IGW9LGLG: An invalid function was requested

70060014 IGW9LGLG: Buffer length error

70060015 IGW9LGLG: Lost data

70060016 IGW9LGLG: Lost access

70060017 IGW9LGLG: A terminate all request failed with an unexpected return code

70060018 IGW9LGLG: Convert to ESTAE failed

70060019 IGW9LGLG: Convert to FRR failed

7006001A IGW9LGLG: Force token is a required parameter for a write

7006001B IGW9LGLG: Force token is a required parameter for a write

7006001C IGW9LGLG: Unexpected buffer full

70070001 IGW9LMVG: IGWFTOKM failed

70070002 IGW9LMVG: Chain token is zero

70070003 IGW9LMVG: An invalid function was requested

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 259

Logging services reason codes (continued)

Reason Code Description

70070004 IGW9LMVG: Chain move failed

70070005 IGW9LMVG: LGA pointer is zero

70070006 IGW9LMVG: DFSMStvs terminated

70070007 IGW9LMVG: The undo log is broken

70076908 IGW9LMVG: Latch purged and nullified

70080001 IGW9LBAG: An invalid function was requested

70080002 IGW9LBAG: End of data

70080003 IGW9LBAG: IGWFTOKM failed

70080004 IGW9LBAG: Unexpected START return code

70080005 IGW9LBAG: Unexpected END return code

70080006 IGW9LBAG: User token is a required parameter

70080007 IGW9LBAG: Data pointer is a required parameter

70080008 IGW9LBAG: Data length is a required parameter

70080009 IGW9LBAG: LGA pointer is zero

7008000A IGW9LBAG: DFSMStvs terminated

7008000B IGW9LBAG: Keypoint was ignored

7008000C IGW9LBAG: Unexpected GETNEXT return code

70090001 IGW9LDS1: Unable to change recovery between ESTAE and FRR

70090002 IGW9LDS1: Unable to change recovery between ESTAE and FRR

70090003 IGW9LDS1: IGWFTOKM failed

70090004 IGW9LDS1: LGA pointer is zero

70650001 Create pool failed

70650002 Get block failed

70650003 Free block failed

70660001 GETMAIN failure

70660002 FREEMAIN failure

70670001 Unsupported log name

70670002 IGW9LSYC: The DFSMStvs logger terminated the server

70670003 IGW9LSYC: SQM SUBMIT failed

70670001 IGWLSOXL failed

70670002 IGWLSRXL failed

70680001 IGWFTOKM failed

70690001 IGW9LLMC: IGWLSIXL failed - initialize latch

70690002 IGW9LLMC: IGWLSOXL failed - obtain latch

70690003 IGW9LLMC: IGWLSRXL failed - release latch

70690004 IGW9LLMC: IGWLSNXL failed - nullify latch

Programming applications to use DVSMStvs

260 z/OS: z/OS DFSMStvs Administration Guide

Logging services reason codes (continued)

Reason Code Description

70690005 IGW9LLMC: IGWLSRXL failed - release latch

70690006 IGW9LLMC: Exceeded LRA maximum LOCKS

70690007 IGW9LLMC: Lock not found

70690008 IGW9LLMC: Latch purged and nullified

706A0001 IGW9LDSC: SQM submit failed

706A0002 IGW9LDSC: Suspend failed

706A0003 IGW9LDSC: Unable to change recovery between ESTAE and FRR

706A0004 IGW9LDSC: Unable to change recovery between ESTAE and FRR

706A0005 IGW9LDSC: Resume failed

706B0001 IGW9LTRC: IGWLSOXL failed

706B0002 IGW9LTRC: IGWLSRXL failed

706B0003 IGW9LTRC: Trace buffer first

706B0004 IGW9LTRC: Trace buffer first

706B0005 IGW9LTRC: Trace buffer first

70EA0001 IGW9LSLE: IGWFTOKM failed

70EA0002 IGW9LSLE: LGA pointer is zero

Programming applications to use DVSMStvs

Chapter 4. Programming applications to use DVSMStvs 261

Programming applications to use DVSMStvs

262 z/OS: z/OS DFSMStvs Administration Guide

Chapter 5. Operating in the DFSMStvs transaction
processing environment

This topic describes how to set up the storage management subsystem and how to control DFSMStvs
processing.

Setting up the storage management subsystem
This topic describes DFSMSdfp storage administration for DFSMStvs. For more information about storage
administration, see z/OS DFSMSdfp Storage Administration.

Preparing for the storage management subsystem
Before you define and activate an SMS configuration, you need to perform the following preparatory
steps:

• Allocate control data sets to contain your SMS configuration and to permit the systems in your complex
to communicate with each other.

• Modify SYS1.PARMLIB, which contains three members that direct the initialization and activation of
SMS.

• Establish access to the ISMF Primary Option Menu for Storage Administrators (shown in z/OS DFSMSdfp
Storage Administration).

This topic describes how to perform these preliminary steps so that you can begin defining a base
configuration for an SMS configuration.

For more information about planning and implementing SMS, see z/OS DFSMS Implementing System-
Managed Storage.

For information about planning and preparing for SMS with object support, optical libraries, or tape
libraries, see z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide for Object Support
and z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide for Tape Libraries.

Allocating control data sets

Before you can activate an SMS configuration, you need to allocate control data sets used by SMS and
define their contents. Control data sets are virtual storage access method (VSAM) linear data sets that
contain:

• Base configuration information
• SMS class, aggregate group, optical library, tape library, optical drive, and storage group definitions
• ACS routines.

You can allocate control data sets with access method services or TSO/E commands. You can define and
alter the contents of control data sets using ISMF. SMS uses three types of control data sets: a source
control data set (SCDS), an active control data set (ACDS), and a communications data set (COMMDS).

Restriction: Do not name any of your SMS control data sets the single word ‘ACTIVE’. SMS uses the single
word ‘ACTIVE’ as a reserved word indicating the active configuration residing in the SMS address space.
Naming an SMS control data set ‘ACTIVE’ results in errors.

Source control data set (SCDS):

An SCDS contains an SMS configuration, which defines a storage management policy. You can define any
number of SMS configurations each of which has its own SCDS. Then, you select one SMS configuration to
be the installation storage management policy and make an active working copy of it in an ACDS.

© Copyright IBM Corp. 2003, 2020 263

Active control data set (ACDS):

When you activate an SCDS, its contents are copied to an ACDS. The current ACDS contains a copy of the
most recently activated configuration. All systems in an SMS complex use this configuration to manage
storage. You can define any number of SCDSs, but only one can be put in the ACDS. z/OS MVS
Initialization and Tuning Guide explains how to specify the ACDS. You can define more than one
IGDSMSxx member, each specifying a different ACDS, but you can use only one ACDS at a time.

Restriction: You cannot define or alter an ACDS. This also means that you cannot use an ACDS as an
SCDS if the SCDS is lost.

You can modify the SCDS from which your current storage management policy was activated without
disrupting operations, because SMS manages storage with a copy of the SMS configuration (an ACDS)
rather than with the original (an SCDS). While SMS manages storage using an ACDS, you can:

• Create a backup copy of the SCDS
• Build a new SCDS
• Update the SCDS from which the ACDS was activated
• Modify any SCDS

Figure 8 on page 264 shows the relationship among SCDSs and ACDSs in an installation.

Figure 8. Relationships among SCDSs and ACDSs in an installation

Communications data set (COMMDS):

The COMMDS serves as the primary means of SMS communication among systems in the SMS complex.
The active systems in an SMS complex access the COMMDS for current SMS complex information.

The COMMDS contains the name of the ACDS containing the currently active storage management policy,
the current utilization statistics for each system-managed volume, and other system information. You can
define any number of COMMDSs, but only one can be active in an SMS complex.

Calculating the size of storage and active control data sets

Before you allocate control data sets, you need to estimate their size. When calculating the size of either
an ACDS or an SCDS, you have to account for system and base configuration information, SMS class,
aggregate group, storage group, optical library and drive, and tape library definitions.

The following formula can help you determine the size of a source or active control data set:

size (bytes) = 150000 +
 (14000 * SG) +
 (2312 * (MC + SC + DC + AG + CS)) +
 (12000 * (DRV + LIB + VOL))

where:
150000 bytes

represent fixed data fields. For example, suppose you have the following configuration:

• Five storage groups
• Four management classes
• Two storage classes

264 z/OS: z/OS DFSMStvs Administration Guide

• Five data classes
• Two aggregate groups
• 6 optical libraries
• 24 optical drives
• 40 DASD volumes

With this configuration, the equation yields a value of 1088600 bytes for control data set allocation.

SG
is the estimated number of storage groups

MC
is the estimated number of management classes

SC
is the estimated number of storage classes

DC
is the estimated number of data classes

AG
is the estimated number of aggregate groups

CS
is the estimated number of cache sets in the base configuration (for VSAM record-level sharing (RLS)
only)

DRV
is the estimated number of optical drives in the SMS complex to be managed by SMS

LIB
is the estimated number of optical and tape libraries in the SMS complex to be managed by SMS

VOL
is the estimated number of DASD volumes in the SMS complex to be managed by SMS

If you are running SMS in a Parallel Sysplex environment with different releases of DFSMS, you must
allocate your control data sets using calculations that are based on the highest DFSMS level. If you do not,
your control data sets might be too small, because the storage requirements for classes and groups might
be different between releases or new classes, groups, or other items might be added.

On an IBM 3380 or 9345 DASD, each track can contain 40 KB (40960 bytes). On an IBM 3390 DASD,
each track can contain 48 KB (49156 bytes).

If your SCDS or ACDS is not large enough, you might receive SMS reason code 6068 when attempting to
save its contents. When reason code 6068 occurs, allocate a new, larger control data set and copy your
existing SCDS into your new SCDS, or your existing ACDS into your new ACDS. You can then delete the old
SCDS or ACDS and use the new one.

Allocating a new SCDS or ACDS resolves the problem only when reason code 6068 is caused by a data set
size problem. Because this reason code is returned when a system service called by data-in-virtual (DIV)
fails, the error might have other causes. Messages returned to you or the system console can help
determine the cause of the failure.

Restriction: DIV has a current size limit of 4 GB. Make sure you do not exceed this limit.

Calculating the size of a COMMDS

When you calculate the size of a COMMDS, you have to account for both system and volume information.
With SMS 32-name support, the amount of space required for a COMMDS increased. A previously
allocated COMMDS might have insufficient space to support the changes. You might need to allocate a
new COMMDS prior to activating SMS on a current-level system, and you should always review the
COMMDS size when migrating from prior DFSMS releases. The following formula can help you determine
the size of a COMMDS: (VOL = Estimated number of DASD volumes in the SMS complex to be managed by
SMS):

Chapter 5. Operating in the DFSMStvs transaction processing environment 265

COMMDS size (bytes) =
8192 + (588 * VOL)

For example, if you have 40 DASD volumes in the SMS complex, you need to allocate 31712 bytes for the
COMMDS.

Selecting volumes for control data sets

SMS control data sets can be either SMS-managed or non-SMS-managed. Initially, you should ensure that
your control data sets have a volume count of 1. The volume count can be explicitly specified, implied by
the number of volume serials provided, or derived from the data class assigned to the data set (for more
information, see z/OS DFSMSdfp Storage Administration). If you give an SMS control data set a volume
count that is greater than the number of volumes on which the data set actually resides, you might
receive messages IEF244I and IEF489I when you attempt to activate it.

If you have a multivolume SCDS that you are activating into a single volume ACDS, you might receive an
error because the ACDS is not large enough and volumes cannot be dynamically added to it. To bypass
this problem, you need to create a new multivolume ACDS and then activate the ACDS and SCDS
simultaneously using the SETSMS command. See “Changing storage management subsystem
parameters” on page 270 for further information on this command.

If your SMS complex includes more than 16 systems, be sure that the ACDS and COMMDS are accessible
to every system in the complex. Define your control data sets on volumes which are capable of being
attached to more than 16 systems, such as IBM RAMAC™ Virtual Array volumes.

Allocating an SCDS

The following access method services job allocates a 6-track SCDS.

 //STEP EXEC PGM=IDCAMS
 //SYSUDUMP DD SYSOUT=*
 //SYSPRINT DD SYSOUT=*
 //SYSIN DD *
 DEFINE CLUSTER(NAME(SMS.SCDS1.SCDS) LINEAR VOL(SMSV01) -
 TRK(6 6) SHAREOPTIONS(2,3)) -
 DATA(NAME(SMS.SCDS1.SCDS.DATA))
 /*

This job creates a VSAM linear data set named SMS.SCDS1.SCDS. You can combine the DEFINE
commands for all your allocations into the same job step, but this example shows only one for purposes
of illustration. After allocating an SCDS, you define its contents through ISMF dialogs.

You should allocate an SCDS on a device shared by all systems in the SMS complex. If you allocate an
SCDS on a device that is not shared by all the systems, then you can activate the SCDS only from systems
that have access to it.

You should specify the REUSE option when you define an SCDS to avoid running into space problems
(SMS reason code 6068) as result of subsequent SCDS updates, or IMPORT/EXPORT functions.

For information on using access method services commands, see z/OS DFSMS Access Method Services
Commands.

Allocating an ACDS

The following access method services job allocates a 6-track ACDS.

 //STEP EXEC PGM=IDCAMS
 //SYSUDUMP DD SYSOUT=*
 //SYSPRINT DD SYSOUT=*
 //SYSIN DD *
 DEFINE CLUSTER(NAME(SMS.ACDS1.ACDS) LINEAR VOL(SMSV02) -
 TRK(6 6) SHAREOPTIONS(3,3)) -
 DATA(NAME(SMS.ACDS1.ACDS.DATA))
 /*

This job creates a VSAM linear data set named SMS.ACDS1.ACDS.

266 z/OS: z/OS DFSMStvs Administration Guide

An ACDS must reside on a shared volume, accessible from all systems in the SMS complex. To ease
recovery in case of failure, the ACDS should reside on a different volume than the COMMDS. Also, you
should allocate a spare ACDS on a different shared volume. z/OS DFSMSdfp Storage Administration
provides more information about the backup and recovery of control data sets.

You create the contents of an ACDS by activating a valid SCDS. The distinction between a valid SCDS and
one that is not valid is described in z/OS DFSMSdfp Storage Administration. The control data set (ACDS or
COMMDS) must reside on a volume that is not reserved by other systems for a long period of time
because the control data set (ACDS or COMMDS) must be available to access for SMS processing to
continue.

You should specify the REUSE option when you define an ACDS to avoid running into space problems
(SMS reason code 6068) as result of subsequent ACDS updates, or IMPORT/EXPORT functions.

Allocating a COMMDS

The following access method services job allocates a 1-track COMMDS;

 //STEP EXEC PGM=IDCAMS
 //SYSUDUMP DD SYSOUT=*
 //SYSPRINT DD SYSOUT=*
 //SYSIN DD *
 DEFINE CLUSTER(NAME(SMS.COMMDS1.COMMDS) LINEAR VOL(SMSVOL) -
 TRK(1 1) SHAREOPTIONS(3,3)) -
 DATA(NAME(SMS.COMMDS1.COMMDS.DATA))
 /*

This job creates a VSAM linear data set named SMS.COMMDS1.COMMDS.

The COMMDS must reside on a shared volume accessible from all systems in the SMS complex. To ease
recovery in case of failure, the COMMDS should reside on a different volume than the ACDS. Also, you
should allocate a spare COMMDS on a different shared volume. z/OS DFSMSdfp Storage Administration
provides additional information on the backup and recovery of control data sets. The control data set
(ACDS or COMMDS) must reside on a volume that is not reserved by other systems for a long period of
time because the control data set (ACDS or COMMDS) must be available to access for SMS processing to
continue.

Recommendation: Use SHAREOPTIONS(3,3) when allocating an ACDS. This allows full authority to read
from and write to an ACDS from any system. The ACDS and COMMDS must be accessed from all systems
in the complex simultaneously.

Modifying the SYS1.PARMLIB data set

The IGDSMSxx, IEASYSyy, and IEFSSNxx members of SYS1.PARMLIB direct the initialization and
activation of SMS. IGDSMSxx provides initialization parameters to SMS. The SMS=xx parameter of
IEASYSyy indicates the name of the SYS1.PARMLIB member IGDSMSxx that is used for initialization. For
example, if SMS=01 in IEASYSyy, then the IGDSMS01 member of SYS1.PARMLIB is used during
initialization. The SMS entry in IEFSSNxx identifies SMS to z/OS.

For information about how to create an IGDSMSxx member in SYS1.PARMLIB and how to define SMS to
z/OS through IEFSSNxx, see z/OS MVS Initialization and Tuning Guide. For information about the syntax of
the IGDSMSxx, IEASYSyy, and IEFSSNxx parmlib members, see z/OS MVS Initialization and Tuning
Reference.

Starting the SMS address space

When you have completed preparations and are ready to start SMS, use the T SMS=xx command, in which
xx identifies IGDSMSxx as the SMS initialization member. The T SMS=xx command is an abbreviation for
the SET SMS=xx command, discussed in “Step 2: Prepare one system” on page 269. To eliminate
confusion with the SETSMS operator command, the abbreviated T SMS=xx form of the SET SMS=xx
command is used throughout the remainder of this topic.

When you have sufficiently tested your operations and are ready to have SMS automatically started at
future IPLs, add the IGDSSIIN module name to the SMS entry.

Chapter 5. Operating in the DFSMStvs transaction processing environment 267

Here are some examples of the SMS record:

• The following SMS record defines SMS to z/OS without starting SMS at IPLs:

SUBSYS SUBNAME(SMS)

• The following SMS record defines SMS to z/OS and starts SMS at future IPLs:

SUBSYS SUBNAME(SMS) INITRTN(IGDSSIIN)

The system uses the default values of ID and PROMPT. IGDSMS00 specifies initialization information,
and the operator has no control over the rest of SMS initialization.

• The following SMS record allows the operator to modify SMS initialization:

SUBSYS SUBNAME(SMS) INITRTN(IGDSSIIN)
 INITPARM(',PROMPT=YES')

The system uses the default value of ID, which identifies IGDSMS00 as containing initialization
information. The PROMPT parameter requests that SMS display IGDSMS00, so that the operator can
modify the parameters in IGDSMS00.

• The following SMS record initializes SMS using IGDSMS01:

SUBSYS SUBNAME(SMS) INITRTN(IGDSSIIN)
 INITPARM('ID=01,PROMPT=DISPLAY')

The PROMPT parameter requests that the contents of IGDSMS01 be displayed, but the operator cannot
modify them.

Accessing the storage administrator Primary Option Menu

The first time you select ISMF, you get the ISMF Primary Option Menu for end users. To get the ISMF
Primary Option Menu for storage administrators (which is shown in z/OS DFSMSdfp Storage
Administration), select option 0, ISMF PROFILE. Within the ISMF Profile Option Menu, select option 0,
USER MODE, and press ENTER. You get the User Mode Entry panel, where you indicate that you want the
storage administrator Primary Option Menu for all future ISMF sessions. To do this, select option 2 on the
User Mode Entry panel. After changing the user mode, you must exit ISMF and then return to it to view the
Primary Option Menu for Storage Administrators.

z/OS DFSMSdfp Storage Administration explains how to prevent end users from gaining access to the
storage administrator Primary Option Menu through the ISMF PROFILE option. The reason for restricting
access to the Primary Option Menu for Storage Administrators is to prevent unauthorized users from
performing storage administrator tasks.

Activating storage management subsystem configurations
You can activate an SMS configuration manually, or automatically at IPL. This topic shows you how to
perform the initial activation of an SMS configuration using a four-step manual approach. It also explains
how you can activate an SMS configuration automatically at IPLs. In addition, it explains how you can
change individual SMS parameters with the SETSMS operator command.

Prerequisite: When you activate an SMS configuration, ensure that all of the DASD volumes that belong to
the configuration are initialized as SMS volumes. Otherwise, attempted allocations to an improperly
initialized volume will fail. However, initialization for tape volumes is no different for SMS-managed and
non-SMS-managed volumes.

Manually activating a storage management subsystem configuration

IGDSSIIN is the subsystem initialization routine module for SMS. By omitting it from the SMS entry of
IEFSSNxx for each system in the SMS complex, you can manually control the activation of an SMS
configuration. Refer to “Preparing for the storage management subsystem” on page 263.

268 z/OS: z/OS DFSMStvs Administration Guide

Step 1: IPL each system in the SMS complex

After defining SMS as a subsystem to z/OS, IPL each system in the SMS complex. The presence of the
SMS entry in IEFSSNxx tells z/OS to recognize SMS as a valid subsystem within each system. The absence
of the IGDSSIIN module name in IEFSSNxx tells the system that you want to start SMS manually.

Step 2: Prepare one system

From one system in the SMS complex, issue the T SMS=xx command, in which xx identifies IGDSMSxx as
the SMS initialization control member of SYS1.PARMLIB. SMS uses the ACDS and COMMDS identified in
IGDSMSxx to manage storage. Because the initial ACDS and COMMDS are empty, the system is activated
with a null configuration. Keep in mind that a null configuration is intended only as a migration path.

Requirement: All systems in the SMS complex must be running in the same mode. When an SMS control
data set that supports only eight names is accessed for update on a system running in 32-name mode,
you must convert the data set to a new, incompatible format in order to support 32 names. Confirm this
conversion using the operator console or the ISMF. This conversion is permanent, so make copies of your
control data sets before the system mode is converted.

Step 3: Activate the configuration from one system

The configuration is only activated once for the SMS complex. It is not necessary to activate a
configuration from every system in the SMS complex. After activating SMS with a null configuration,
activate an SMS configuration contained in a valid SCDS on the same system. You can use either the ISMF
ACTIVATE command or the SETSMS operator command. Both procedures copy the contents of the SCDS
to the ACDS specified in IGDSMSxx.

When an SMS control data set that supports only eight names is accessed for update on a system running
in 32-name mode, you must convert the data set to a new, incompatible format in order to support 32
names. Confirm this conversion, using the operator console or ISMF. This conversion is permanent, so you
should make copies of your control data sets before the system mode is converted.

Activating with the ISMF ACTIVATE command

On the Control Data Application Selection panel shown in z/OS DFSMSdfp Storage Administration, specify
the name of an SCDS and issue the ACTIVATE command from the command line. A Write to Programmer
message indicates if the activation is successful, provided you have WTPMSG in the TSO/E PROFILE.

Activating with the SETSMS operator command

From the operator console, issue the command:

SETSMS SCDS(dsname)

In the command, dsname identifies the name of the SCDS to be activated. The command syntax is as
follows:

SETSMS SCDS(SMS.SCDS1.SCDS)

Step 4: Activate SMS on the other systems

For the other systems in the SMS complex, use the T SMS=xx command to start SMS on those systems,
using the SMS configuration identified in Step Three. In each system, IGDSMSxx specifies the name of the
ACDS containing the SMS configuration. All of the IGDSMSxx members must point to the same ACDS.
Because the ACDS is no longer empty, the systems use it (and the COMMDS) to manage storage.

Automatically activating a storage management subsystem configuration

For each system in the SMS complex, update the SMS entry in IEFSSNxx to include the IGDSSIIN module
name.

Make certain that each ID field identifies the IGDSMSxx member containing the name of the last used
ACDS. All of the IGDSMSxx members must point to the same ACDS. At future IPLs, the SMS configuration
contained in the ACDS is activated by all systems in the SMS complex. For example, the following

Chapter 5. Operating in the DFSMStvs transaction processing environment 269

command indicates that the ACDS specified in IGDSMS02 contains the SMS configuration to be activated
at future IPLs:

SMS,IGDSSIIN,'ID=02,PROMPT=DISPLAY'

Changing storage management subsystem parameters

After you activate an SMS configuration, you can use the SETSMS operator command to change SMS
parameters.

Restriction: Some of the parameters contained in the IGDSMSxx parmlib member cannot be changed
using the SETSMS operator command. The section “Parameters of the SETSMS operator command” on
page 270 lists only those parameters that can be changed using the SETSMS operator command. For a
complete list of the IGDSMSxx parmlib member parameters, see z/OS MVS Initialization and Tuning
Guide.

Parameters of the SETSMS operator command

You can change SMS parameters by using the SETSMS operator command. For descriptions of the
parameters, see z/OS MVS System Commands and z/OS MVS Initialization and Tuning Guide.

Considerations for changing storage management subsystem configurations

When activating a new SMS configuration, you have two options for keeping the currently active SMS
configuration information:

• Keep, but never modify, the original SCDS from which the current SMS configuration was activated.

If you choose this method, you need to maintain a log of all status changes, such as VARY storage group
commands, that you make to the currently active SMS configuration. If in the future you activate a
different SMS configuration but then decide you want to fall back to your original, you can reactivate the
SCDS. You lose all the status changes you have made since activating the SCDS and must reenter them,
but you return to the original SMS configuration.

• Save the current active SMS configuration using the SETSMS operator command:

SETSMS SAVEACDS(ACDS.FALLBACK)

This is the better alternative for keeping the SMS configuration information..

ACDS.FALLBACK must be an existing, already allocated data set. By using this command, you not only
save the current storage management policy in ACDS.FALLBACK, but you also save the status changes
you have made since the original SCDS was activated. You can then activate the new SMS configuration.
If in the future you decide you want to fall back to the original SMS configuration, you can use the
SETSMS operator command to reactivate it:

SETSMS ACDS(ACDS.FALLBACK)

This alternative is also useful if you have altered the SCDS that you originally activated.

Restriction: Any SMS status that is changed using the SETSMS command is overridden by the MVS status
if a new configuration is activated. For more information on the SETSMS operator command, see z/OS
MVS System Commands.

B' vnn8vnvvv.l'Requirement: All systems in the SMS complex must be running in the same mode.

When an SMS control data set that supports only eight names is accessed for update on a system running
in 32-name mode, you must convert the data set to a new, incompatible format in order to support 32
names. Confirm this conversion using the operator console or the ISMF. This conversion is permanent, so
you should make copies of your control data sets before the system mode is converted.

OAM considerations for changing SCDSs

SMS notifies OAM when a new SCDS has been activated. OAM takes action depending on the RESTART
parameter that is specified on the OAM address space. If RESTART=YES is specified, or defaulted, the

270 z/OS: z/OS DFSMStvs Administration Guide

OAM address space automatically restarts, rebuilding its configuration to match the newly activated
SCDS. If RESTART=NO is specified, OAM does not automatically restart, but issues a message
acknowledging that an activation has taken place. In this case, you must determine if an OAM restart is
necessary. If a restart is necessary, use the MODIFY OAM,RESTART command.

When RESTART=YES is specified, the length of the delay between the SCDS activation and the OAM
restart depends on the value specified in the INTERVAL keyword in the active IGDSMSxx parmlib
member. During this reinitialization, all optical libraries and drives defined to the new SCDS are reset to
the initial status values specified in the SCDS. After the OAM restart completes, display all optical libraries
and drives, and tape libraries, and then set them to the desired online or offline status before the
reinitialization occurred.

For more information, see z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide for
Object Support.

Displaying storage management subsystem information
You can use the DISPLAY SMS MVS command to display information about the storage management
subsystem, as follows:

• Active SMS configuration
• SMSVSAM status of sharing control data sets
• SMSVSAM server name
• Coupling facility cache and lock structures

For a description of the DISPLAY SMS command, see z/OS MVS System Commands.

Changing storage management subsystem parameters
You can use the SET SMS or SETSMS MVS command to change SMS parameters. Use the SET SMS
command to change parameters before you bring up SMS. Use the SETSMS command when SMS is active
(running) to change a subset of SMS parameters from the console without changing the active IGDSMSxx
member of SYS1.PARMLIB.

For descriptions of SET SMS and SETSMS, see z/OS MVS System Commands.

Controlling DVSMStvs processing
While DFSMStvs is processing, you can monitor the performance of applications programs and maintain
data integrity during backup-while-open (BWO) processing.

Monitoring application programs that use DFSMStvs
For information about monitoring application programs that use DFSMStvs and tuning performance, see
z/OS DFSMStvs Planning and Operating Guide.

Changing DFSMStvs status
You can use the VARY SMS MVS command to change the status for DFSMStvs in these ways:

• Change the state of a DFSMStvs instance or change the state of all DFSMStvs instances in the sysplex
• Change the state of a log stream to which DFSMStvs has access
• Change the state of a data set for VSAM record-level sharing (RLS) and DFSMStvs access
• Start or stop peer recovery processing for a DFSMStvs instance

Restriction:You cannot use the VARY SMS command to change the state of a DFSMStvs instance while it
is initializing. Any attempt to do so is suspended until the initialization completes.

The possible states of a DFSMStvs instance are as follows:

Chapter 5. Operating in the DFSMStvs transaction processing environment 271

ENABLE
Enables DFSMStvs to begin accepting new units of recovery for processing.

DISABLE
Prevents DFSMStvs from processing new work requests. DFSMStvs does not process new work
requests from units of recovery that are currently in progress.

QUIESCE
Prevents DFSMStvs from accepting any new units of recovery for processing. DFSMStvs completes the
processing of any units of recovery in progress.

The possible states of a data set follow:

ENABLE
Unquiesces a data set for VSAM RLS and DFSMStvs access.

QUIESCE
Quiesces a data set for VSAM RLS and DFSMStvs access.

For a description of the VARY SMS command, see z/OS MVS System Commands.

For information about the effects of DFSMStvs, log stream and data set states on DFSMStvs processing,
see z/OS DFSMStvs Planning and Operating Guide.

Maintaining data integrity during backup-while-open processing
This topic describes DFSMSdss storage administration for DFSMStvs. For more information, see z/OS
DFSMSdss Storage Administration.

Data integrity—serialization

DFSMSdss uses volume serialization and data set serialization functions to ensure that data sets are
not modified during the processing of DFSMSdss commands. Volume serialization is accomplished by
using the RESERVE macro. Data set serialization is accomplished by using the ENQ macro and the
DFSMSdss DYNALLOC function. In the case of shared DASD, volume serialization ensures that data sets
are not being added, deleted, renamed, or extended from either the same processor or other processors.

You can control volume serialization with the enqueue exit routine. (Refer to z/OS DFSMS Installation
Exits for additional information regarding installation enqueue exit routines.) This allows other programs
to access volumes while DFSMSdss is running. Volume serialization, however, cannot be overridden.

DFSMSdss supports data sets that are always open, or open for long periods of time, with backup-while-
open serialization.

DFSMSdss supports backup-while-open processing for DFSMStvs and for two types of database
applications: Customer Information Control System (CICS) and information management system (IMS).

CICS support includes both RLS CICS and non-RLS CICS backup-while-open, as “Backup-while-open data
sets (CICS and DFSMStvs)” on page 272 describes.

DFSMStvs supports backup-while-open with or without CICS, as “Backup-while-open data sets (CICS and
DFSMStvs)” on page 272 describes.

DFSMSdss also supports backup-while-open serialization for IMS data sets:

• Indexed VSAM data sets, such as key-sequenced data sets (KSDS)
• Nonindexed VSAM data sets, such as entry-sequenced data sets (ESDS)
• Non-VSAM data sets, such as OSAM

“Backup-while-open data sets (CICS and DFSMStvs)” on page 272 describes DFSMStvs backup-while-
open support.

Backup-while-open data sets (CICS and DFSMStvs)

DFSMSdss supports backup-while-open serialization, which can perform backups of data sets that are
open for update for long periods of time. It can also perform a logical data set dump of these data sets

Data integrity—serialization

272 z/OS: z/OS DFSMStvs Administration Guide

even if another application has them serialized. Backup-while-open is a better method than using SHARE
or TOLERATE(ENQFAILURE) for dumping Customer Information Control System (CICS) VSAM file-control
data sets that are in-use and open for update. When you dump data sets that are designated by CICS as
eligible for backup-while-open processing, data integrity is maintained through serialization interactions
between CICS (database control program), CICSVR (CICS VSAM Recovery), VSAM record management,
DFSMSdfp, and DFSMSdss. When you dump data sets that are designated by DFSMStvs as eligible for
backup-while-open processing, data integrity is maintained through serialization interactions between
DFSMStvs, VSAM record management, DFSMSdfp, and DFSMSdss.

Although the BWO(TYPECICS) parameter applies to both CICS and DFSMStvs, DFSMStvs enables you to
back up a data sets while they are open whether or not you are running CICS.

Figure 9 on page 273 shows the backup-while-open serialization for dumping CICS data sets that are
open for update. Backup-while-open processing also ensures that any update activity that may invalidate
the dump is detected. Simultaneous recovery or deletion of the data set while it is being dumped is also
prevented.

Figure 9. Block diagram for backup-while-open serialization

In Figure 9 on page 273, a VSAM file-control data set (7) is allocated for CICS (1) through MVS allocation
services (3) using JCL or dynamic allocation methods. This results in serialization through an enqueue on
the name of the data set and the resource name SYSDSN (4). When the VSAM data set is opened (3),
another level of serialization occurs through an enqueue on the names of the components of the VSAM
data set and the resource name SYSVSAM (4). For eligible data sets, CICS uses DFSMSdfp (5) to set a
status in the backup-while-open indicators (6) in the catalog entry for the data set.

For a dump operation, DFSMSdss (8) attempts to acquire the SYSDSN, SYSVSAM, and backup-while-open
(9) enqueues for the data set. When the enqueue on the cluster name of the data set and the resource
name of BWODSN is acquired, but not the enqueues for both SYSDSN and SYSVSAM, DFSMSdss uses
DFSMSdfp to get the backup-while-open indicators and starts to dump the open data set if it were eligible
for backup-while-open processing.

The backup-while-open enqueue is used to prevent more than one DFSMSdss operation, such as a
simultaneous dump and restore (10), and to prevent the data set from being deleted while it is being
dumped by DFSMSdss.

Data integrity—serialization

Chapter 5. Operating in the DFSMStvs transaction processing environment 273

While the data set is being dumped, a database application program might update the data set in a
manner that invalidates the data set. For example, a control-interval or control-area split might occur. If
this happens, VSAM record management uses DFSMSdfp to change the backup-while-open status.

When the backup of the open data set is completed, DFSMSdss obtains the current backup-while-open
indicators. If the indicators are different from when the dump was started, DFSMSdss invalidates the
dump of the data set. When concurrent copy is used, updates made while the data set is being dumped
do not cause the dump to be invalidated.

Backup-while-open status definition

DFSMSdss interprets backup-while-open status numbers as follows:
Status

Meaning to DFSMSdss
000

Normal serialization and processing techniques are used to dump the data set.
001

CICSVR forward-recovers the data set.
010

A control-interval split, control-area split, or extend of the data set was either interrupted before the
dump started or is currently in process.

011
A control-interval split, control-area split, or an extend of the data set completed successfully. CICS
or DFSMStvs closed the data set and there is no mismatch between the base cluster and any alternate
index.

100
The data set might be dumped while it is open for update.

101
The data set was restored and is down-level. CICSVR or DFSMStvs must process the data set before a
database application uses it.

110
The data set was updated and the completion of a split or extend invalidates any dump that was in
progress. When concurrent copy is used, the chances of an in-progress dump being invalidated by a
split or extend is significantly reduced.

111
The data set is in an indeterminate state.

Backup-while-open processing

DFSMSdss actions that result from dumping a data set are based on the following conditions:

• Success or failure to acquire an exclusive enqueue for the resource names of SYSDSN, SYSVSAM, and
BWODSN

• Backup-while-open status indicators before the dump
• Backup-while-open status indicators after the dump

When DFSMSdss acquires all of the exclusive enqueues: The data set is not open for update, even
though it has a nonzero backup-while-open status. The particular processing action is a direct result of
the initial backup-while-open status, as follows:

• Status is 000; the data set is dumped. When it is restored, the backup-while-open status is restored as
000.

• Status is 001. The data set is dumped and the backup-while-open status is preserved and restored
when the data set is subsequently restored. This data set is in an indeterminate state because of an
incomplete forward recovery by CICSVR, which cannot forward-recover the restored data set.

Data integrity—serialization

274 z/OS: z/OS DFSMStvs Administration Guide

DFSMSdss lets you dump and restore this data set for nonstandard recovery purposes. After restoring
the data set and correcting all errors in the data set, reset the BWO status to 000 by using CICS-
provided methods. The preferred action is for you to restore an earlier dump of the data set and use
CICSVR to do forward recovery processing. This maintains the integrity of the data.

• Status is 010. DFSMSdss did not dump the data set. Take corrective action before using the data set by
performing the following actions:

– Determine if alternate indexes are present for the sphere. If they are, do either of the following tasks:

- Rebuild the alternate indexes from the base cluster, and reset the BWO status to 000 by using the
CICS methods.

- Restore an earlier dump of the sphere, and use CICSVR to do forward recovery processing.
– If there are no alternate indexes, the data set is usable as it is. Reset the BWO status to 000 by using

CICS methods.
• Status is 101. The data set is dumped and the backup-while-open status is preserved and restored

when the data set is subsequently restored. This lets you process the data set with CICSVR before a
database application uses it.

• Status is 011, 100, 110, 111. The backup-while-open status is altered to 000 before the data set is
dumped. When it is restored, the backup-while-open status is restored as 000.

When DFSMSdss acquires an exclusive enqueue on BWODSN (but not SYSDSN and
SYSVSAM):Another program is using the data set or the data set is open. The particular processing action
is a direct result of the initial backup-while-open status, as follows:

• Status is 000. The data set is not eligible for backup-while-open processing. The data set is not dumped
unless SHARE or TOLERATE(ENQFAILURE) is specified and the necessary conditions for those keywords
are met.

• Status is 001, 010, 011, 101, or 111; the data set is not dumped.
• Status is 110; the backup-while-open status is altered to 100 and the data set is dumped (see the

following text).
• Status is 100. The data set is dumped, even though it is already in use (including being open for update

by another program). When the data set is restored, the backup-while-open status is set to 101. This
ensures that CICSVR or DFSMStvs can process the data set prior to its use by a database application.
The dump is invalidated if the backup-while-open indicators change while the data set is being dumped.
The chances of this invalidation occurring reduce significantly when you use concurrent copy.

Backup-while-open and concurrent copy

Concurrent copy improves backup-while-open processing by significantly reducing the chances of the
invalidation of a backup-while-open dump because of updates to the data set. To use concurrent copy,
specify the CONCURRENT keyword when you dump backup-while-open data sets. The following list
compares the various kinds of dumps that you can ask for:

• Normal dump. Use of the data set must be quiesced. DFSMSdss obtains serialization, dumps the data
set, and then releases the serialization. The data set cannot be used for the entire time.

• Concurrent copy dump. Use of the data set must be quiesced. DFSMSdss obtains serialization,
performs concurrent copy initialization, releases serialization, and then dumps the data set. DFSMSdss
completes concurrent copy initialization within a very short time (compared to the actual time to dump
the data set). DFSMSdss can use the data set as soon as the concurrent copy initialization is complete.

• Backup-while-open dump. Use of the data set does not need to be quiesced. DFSMSdss dumps the
data set without obtaining serialization. The data set can remain in use for the entire time, but update
activity can invalidate the dump at any time during the dump.

• Backup-while-open dump using concurrent copy. Use of the data set does not need to be quiesced.
DFSMSdss does not obtain serialization. DFSMSdss performs the concurrent copy initialization.
DFSMSdss completes concurrent copy initialization within a very short time (compared to the actual
time to dump the data set). The data set can remain in use for the entire time. Like the backup-while-
open dump, update activity during the dump can invalidate the dump; however, only update activity that

Data integrity—serialization

Chapter 5. Operating in the DFSMStvs transaction processing environment 275

occurs before DFSMSdss performs the concurrent copy initialization can invalidate the dump. The
chances of the update activity invalidating the dump are significantly reduced because the concurrent
copy initialization completes very quickly.

TOLERATE (ENQFAILURE) and SHARE considerations

Using TOLERATE(ENQFAILURE) modifies the processing and serialization for backup-while-open data
sets. The data sets are dumped when the backup-while-open status is 100, even though none of the
enqueues are successfully acquired.

To maintain data integrity and data security, do not specify either SHARE or TOLERATE(ENQFAILURE)
when you dump backup-while-open data sets.

An exclusive enqueue on the BWODSN resource name for the data set is required for DFSMSdss to alter
the backup-while-open status. DFSMSdss attempts an exclusive enqueue only on the BWODSN resource
name. Unless the backup-while-open status is already 100, the dump fails, even though you specified
SHARE or TOLERATE(ENQFAILURE).

Recovery data

CICS maintains recovery data in the form of a date and time-stamp in the catalog entry for backup-while-
open data sets.

DFSMStvs maintains recovery data in forward recovery log records. DFSMSdss does not use or process
this recovery data. The data is dumped and restored to preserve the information for CICSVR or possibly
for another forward recovery utility. The recovery data is also printed in selected messages to assist you
in your recovery efforts.

Data integrity—serialization

276 z/OS: z/OS DFSMStvs Administration Guide

Chapter 6. Diagnosing DFSMStvs problems

This topic describes DFSMSdfp diagnosis information for DFSMStvs.

Any problem from a module that has a name beginning with "IGW8" or any reason code that starts with
"6Fxxxxxx" is from DFSMStvs recoverable file services, and any module that has a name beginning with
"IGW9" or any reason code that starts with "70xxxxxx" is from the DFSMStvs logger. The DFSMStvs log
records include the subsystem ID, like IGWTVS01 and IGWTVS02. Also, any IGW8xx and IGW10xxx
messages are from DFSMStvs.

Dumping all the servers in case of a hang applies to DFSMStvs as well as to RLS. Recoverable resource
services (RRS) or the system logger can also cause apparent hangs in DFSMStvs or batch jobs that use it,
so you might want to dump RRS and the system logger too if you think you have a hang related to
DFSMStvs. They might not all fit into one dump, and partial dumps are generally useless, so this might
require more than one dump. If you think you have a hung batch job, be sure to dump both the SMSVSAM
server and the hung job.

Incorrect output keyword
Use this topic when a program or the system does not produce the expected output.

Incorrect output failures can be identified by the following:

• Expected output is missing.
• Output is different than expected.
• Output should not have been generated.
• System indicates damage to the VTOC or VTOC index.
• ISMF panel information or flow is erroneous.

Incorrect output can be the result of a previous failure and can often be difficult to analyze because the
component affected might not be the one that caused the problem. Review previous messages, abends,
console logs, or other system responses. They could indicate the source of the failure.

Procedure
1. If a message accompanied the failure, append the message identifier to the prefix MSG according to

the procedures starting on “Message keyword” on page 283 and add this keyword to the keyword
string. If the system did not issue a message, try to identify any failure-related control blocks, user
areas, or data records and record them on the Keyword Worksheet, in z/OS DFSMSdfp Diagnosis, as
modifier keywords.

Specify the incorrect output keyword as INCORROUT.
2. If the system indicates damage to the VTOC or VTOC index, then DADSM or CVAF normally issues an

error message. In this case, examine the Standard Modifier Keyword list and go to the DADSM/CVAF-
related Incorrect Output Failure Modifier Keywords procedure, both in z/OS DFSMSdfp Diagnosis, to
identify applicable symptom keywords. If VTOC problems are not indicated, continue with this
procedure.

3. Accumulate as much of the following information as possible. It can help you isolate or resolve your
problem, and the IBM Support Center will request it if trap or trace information is needed.

• When was the problem first noticed?
• How was the problem identified (good output versus bad output)?
• Were any system changes or maintenance recently applied? For example, a new device, software

product, APAR, or PTF?

© Copyright IBM Corp. 2003, 2020 277

• Does the problem occur with a specific data set, device, time of day, and so forth?
• Does the problem occur in batch or TSO/E mode?
• Is the problem solid or intermittent?
• Can the problem be re-created?

4. Select the procedure for the failure-related component from the following table.

This table lists the procedure for the failure-related components.

Subcomponent Procedure

Catalog Management See z/OS DFSMSdfp Diagnosis.

Device Console Services See z/OS DFSMSdfp Diagnosis.

ISMF See z/OS DFSMSdfp Diagnosis.

Media Manager See z/OS DFSMSdfp Diagnosis.

O/C/EOV (Common) See z/OS DFSMSdfp Diagnosis.

Storage management subsystem (SMS) See z/OS DFSMSdfp Diagnosis.

VSAM Block Processor or Record Management See z/OS DFSMSdfp Diagnosis.

VSAM RLS See “VSAM RLS—incorrect output keyword” on page 278.

DFSMStvs See “DFSMStvs—incorrect output keyword” on page 279.

All Other DFSMSdfp Subcomponents See z/OS DFSMSdfp Diagnosis.

VSAM RLS—incorrect output keyword
Use this topic to gather detailed information about an incorrect output type-of-failure related to VSAM
RLS.

Incorrect output could have been caused by a previous failure. Examine the system and console logs for
failure-related abends, messages, or return codes. A damaged VSAM data set can also cause incorrect
output. Add any failure-related return codes to the keyword string, exactly as the system presents them.
You can also add the abend or message type-of-failure keywords to the incorrect output keyword string
to define the symptoms more closely.

Procedure

1. Determine whether failure-related VSAM RLS return codes and reason codes exist.

VSAM RLS provides return codes in register 15 and reason codes in either the access method control
block (ACB) or the request parameter list (RPL). Reason codes in the ACB indicate VSAM open or close
errors. Reason codes in the RPL indicate record management error indications returned to the caller of
RLS.

2. Record any failure-related RPL feedback word (a hexadecimal full word) and RPL return code on the
Keyword Worksheet, in z/OS DFSMSdfp Diagnosis, as modifier keywords. The IBM Support Center can
use these values to identify a failure-related module and the nature of the incorrect output.

Example: If the RPL feedback word is X'000C0010', specify the following keywords:

RPLFDBWD 000C0010

3. Determine whether you have a damaged VSAM data set.

Some incorrect output failures involve a damaged VSAM data set. To determine whether you have a
damaged data set, use the IDCAMS EXAMINE command as described in the chapter on functional
command format in z/OS DFSMS Access Method Services Commands and the chapter on checking a
VSAM key-sequenced data set cluster for structural errors in z/OS DFSMS Using Data Sets. The
EXAMINE command provides details about the nature of data set damage.

VSAM RLS—incorrect output keyword

278 z/OS: z/OS DFSMStvs Administration Guide

If these service aids indicate that the data set is not damaged, inform the IBM Support Center if you
call for assistance. If they indicate that the data set is damaged, keep a copy of the output for possible
use by the IBM Support Center. Be prepared to describe the type of data set damage. You should
attempt to recover the data set and rerun the failing job to determine whether the problem is resolved.

The system can indicate a damaged data set by one of the following:

• Messages (discussed in Message section)
• ABEND0C4 (discussed in ABEND section)
• Wait/Loop (discussed in Wait/Loop section)
• RPL feedback word: nnX'08'nnX'9C' or nnX'08'nnX'20'.

4. If the data set is damaged, rebuild it as directed in the topic that describes VSAM record management
damaged data sets in z/OS DFSMSdfp Diagnosis, and rerun the job.

5. See z/OS DFSMSdfp Diagnosis.

DFSMStvs—incorrect output keyword
Use this topic to gather detailed information about an incorrect output type-of-failure related to
DFSMStvs.

Incorrect output could have been caused by a previous failure. Examine the system and console logs for
failure-related abends, messages, or return codes. A damaged VSAM data set can also cause incorrect
output. Add any failure-related return codes to the keyword string, exactly as the system presents them.
You can also add the abend or message type-of-failure keywords to the incorrect output keyword string
to define the symptoms more closely.

Procedure

1. Determine whether failure-related DFSMStvs return codes and reason codes exist.

DFSMStvs provides return codes in register 15 and reason codes in either the access method control
block (ACB) or the request parameter list (RPL). Reason codes in the ACB indicate VSAM open or close
errors. Reason codes in the RPL indicate record management error indications returned to the caller of
DFSMStvs.

2. Record any failure-related RPL feedback word (a hexadecimal full word) and RPL return code on the
Keyword Worksheet, in z/OS DFSMSdfp Diagnosis, as modifier keywords. The IBM Support Center can
use these values to identify a failure-related module and the nature of the incorrect output.

Example: If the RPL feedback word is X'000C0010', specify the following keywords:

RPLFDBWD 000C0010

3. Determine whether you have a damaged VSAM data set.

Some incorrect output failures involve a damaged VSAM data set. To determine whether you have a
damaged data set, use the IDCAMS EXAMINE command as described in the chapter on functional
command format in z/OS DFSMS Access Method Services Commands and the chapter on checking a
VSAM key-sequenced data set cluster for structural errors in z/OS DFSMS Using Data Sets. The
EXAMINE command provides details about the nature of data set damage.

If these service aids indicate that the data set is not damaged, inform the IBM Support Center if you
call for assistance. If they indicate that the data set is damaged, keep a copy of the output for possible
use by the IBM Support Center. Be prepared to describe the type of data set damage. You should
attempt to recover the data set and rerun the failing job to determine whether the problem is resolved.

The system can indicate a damaged data set by one of the following:

• Messages (discussed in message section)
• ABEND0C4 (discussed in ABEND section)
• Wait/Loop (discussed in wait/loop section)
• RPL feedback word: nnX'08'nnX'9C' or nnX'08'nnX'20'.

DFSMStvs—incorrect output keyword

Chapter 6. Diagnosing DFSMStvs problems 279

4. If the data set is damaged, rebuild it as directed in the topic that describes VSAM record management
damaged data sets in z/OS DFSMSdfp Diagnosis and rerun the job.

5. See z/OS DFSMSdfp Diagnosis.

Catalog management—incorrect output keyword
Use this topic to define the keyword when the system produces other than the expected output and you
suspect a failure in the catalog management area.

Procedure

Determine the extent of the incorrect output.

1. Use the LISTCAT command as described in the chapter on functional command format in z/OS DFSMS
Access Method Services Commands to obtain a complete listing of the catalog.

2. Use the IEHLIST program as described in z/OS DFSMSdfp Utilities to obtain a listing of the VTOC. This
might be useful for diagnosing problems in managing DASD volume space or in using access method
services commands.

3. Use the DIAGNOSE command as described in the chapter on functional command format in z/OS
DFSMS Access Method Services Commands to determine whether a catalog structure is correct.
Include any reason codes produced by DIAGNOSE in your search argument.

Example: If the reason code is 23, you would specify it as follows:

DIAGNOSE RC23

4. Use the IDCAMS EXAMINE command as described in the chapter on functional command format in
z/OS DFSMS Access Method Services Commands and the chapter on checking a VSAM key-sequenced
data set cluster for structural errors in z/OS DFSMS Using Data Sets to determine whether the catalog
being used has been damaged, and the nature of the damage.

If the output of these service aids (LISTCAT, IEHLIST, DIAGNOSE, or EXAMINE) indicates that the
catalog is not damaged, inform the IBM Support Center if you call for assistance. If they indicate that
the catalog is damaged, keep a copy of the output for possible use by the IBM Support Center. Be
prepared to describe the type of catalog damage. You should attempt to recover the catalog and rerun
the failing job to determine whether the problem is resolved.

5. See z/OS DFSMSdfp Diagnosis.

Abend keyword
Use this topic when your program (or ISMF session) abnormally ends (abends).

Symptoms of the failure
You can identify an abend by one or more of the following indicators:

• The printed system output of a program
• The text of a system message
• An ISMF abend panel
• An ISPF abend panel
• A TSO/E message that identifies an abend condition
• A SYS1.LOGREC record
• An SVC DUMP

The means by which the system indicates an abend condition provides sufficient evidence to determine
which DFSMSdfp component received the abend. The evidence can be a message prefix or text, the
operation performed, the module that detected the failure, an ISMF abend panel, and so forth.

Catalog management—incorrect output keyword

280 z/OS: z/OS DFSMStvs Administration Guide

A damaged VSAM data set can cause an ABEND0C4 abend condition in any of the modules in the
following table. Repairing the data set resolves the problem.

A damaged VSAM data set can cause an ABEND0C4 abend condition in any of the modules in this table.

Module Module Module Module

IDA019RC IDA019RE IDA019RF IDA019RG

IDA019RH IDA019RI IDA019RJ

IDA019RN IDA019RW IDA019R4

To determine whether you have a damaged data set, use the IDCAMS EXAMINE command as described in
the information on functional command format in z/OS DFSMS Access Method Services Commands and the
information on checking a VSAM key-sequenced data set cluster for structural errors in z/OS DFSMS Using
Data Sets. The EXAMINE command provides details about the nature of data set damage.

For more information on diagnosing problems with damaged VSAM RLS data sets, see z/OS BDT Diagnosis
Reference.

Procedure
When the system encounters an abend condition, it produces one or more of the following kinds of
documentation: an SVC dump, a SYSABEND, a SYSMDUMP, or a SYSUDUMP. To determine the abend
code, go to the procedure that the following table indicates.

Procedures for determining abend codes

Subcomponent Procedure

ISMF/ISPF abend panel See z/OS DFSMSdfp Diagnosis.

TSO/E message See z/OS DFSMSdfp Diagnosis.

All other DFSMSdfp subcomponents Continue with the next section, “Procedure for SVC
dump” on page 281.

Procedure for SVC dump

SVC dumps invoked by the SDUMP macro are usually written as a result of an entry into a functional
recovery routine (FRR) or ESTAE routine. The component recovery routine specifies the addresses that
are dumped and directs the dump to one of the SYS1.DUMPxx data sets. The SVC dump contains enough
information for you to build the keyword string.

You can find the structured search keywords in the Summary Diagnostic Worksheet, in z/OS DFSMSdfp
Diagnosis, under the section RETAIN SEARCH ARGUMENT. Use these keywords in freeform searches.

If the abend code is X'08B', then SMS has experienced a "data in virtual" (DIV) abend. Do the following:

• Obtain the registers from the time of abend, using either the IGD300I message or the system
diagnostic work area (SDWA).

• Examine the contents of register 15. The two low-order bytes contain the DIV reason code related to
the abend. Append the reason code to the keyword prefix RC and record it on the Keyword Worksheet,
in z/OS DFSMSdfp Diagnosis.

See the description of the applicable DIV reason code listed under abend code 08B in z/OS MVS System
Codes. It might help you define more closely the source of the failure. If it indicates that the problem is
external to DFSMSdfp, continue the diagnosis process within the component involved.

If the abend code is X'0F4', then an error occurred during program management binder, DCME, HFS,
PDSE, VSAM RLS, or DFSMStvs. Take the following actions:

• Review SYS1.LOGREC for X'0F4' software records, PDSE symptom records, and any other records
produced at the time of the error. Program management binder, DCME, HFS, PDSE, VSAM RLS, and
DFSMStvs symptom records are primarily used to identify incidents identified with program

Procedure for SVC dump

Chapter 6. Diagnosing DFSMStvs problems 281

management binder, DCME, HFS, PDSE, VSAM RLS, and DFSMStvs X'0F4' abends. When the records
occur without an X'0F4', use the symptom strings to search for matching problems in the IBM
software support database, and if no errors exist, contact the IBM Support Center.

• Prior to the ABEND error, a return code is placed in general register 15 and a unique reason code is
placed in general register 0 describing the exceptional condition. Append the reason code from general
register 0 to the keyword prefix RSN and record it as a modifier keyword on the Keyword Worksheet, in
z/OS DFSMSdfp Diagnosis. Remove the leading zeroes from the return code from general register 15
and append it to the keyword prefix RC. Record it as a modifier keyword on the Keyword Worksheet.
Using the information from the Summary Diagnostic Worksheet in z/OS DFSMSdfp Diagnosis as an
example, the modifier keywords would be as follows:

abend0f4 rsn21042716 rc24

The primary use for PDSE reason codes is to search the IBM software support database; therefore, z/OS
DFSMSdfp Diagnosis does not document reason code descriptions.

To determine keywords for SVC dumps, do the following:

1. Use IPCS to print the summary dump (SUMDUMP). See z/OS MVS IPCS User's Guide.
2. The title page of the Summary Diagnostic Worksheet contains the dump header and title page, which

provide failure-related symptoms extracted from the dump. (See the Summary Diagnostic Worksheet
in z/OS DFSMSdfp Diagnosis.) One or more of the following symptoms should be present:

• ABENDnnn
• Module or CSECT name or both
• Component Identifier
• Release Level
• Service Level
• FMID

Refer to z/OS MVS Diagnosis: Reference and z/OS MVS Diagnosis: Tools and Service Aids for a detailed
explanation of each symptom.

3. If you can identify the ABEND CODE by using the dump header and title page, see “Procedure for
building the abend keyword” on page 283.

4. If the dump does not have a header title or does not otherwise enable you to identify the ABEND
CODE, use the SUMDUMP printed from the SYS1.DUMPxx data set and continue with “Procedure for
SYSABEND, SYSMDUMP, or SYSUDUMP” on page 282.

Procedure for SYSABEND, SYSMDUMP, or SYSUDUMP

Depending on the JCL used, the system directs a dump to the SYSUDUMP, SYSABEND, or SYSMDUMP
data set. If the system did not produce a dump, you might need to recreate the failure and obtain one. For
information about obtaining a dump, see z/OS MVS Diagnosis: Tools and Service Aids.

SYSUDUMP data sets usually do not contain enough information to be useful in diagnosing a failure.

1. Obtain a system storage dump that contains the user's program.
2. Determine the system abend code by using either of the following sources:

• The job-related information about the abend in the job log.

This information includes the abend code, PSW contents, and general-purpose register contents.
The abend code is 3 characters long. To obtain the job log, you must specify the JCL parameter
MSGLEVEL=(1,1) on your JCL JOB card.

• The system storage dump.

– Locate the formatted section at the beginning of the dump. Determine the abending job by
locating the job whose abend code field (TCBCMP at TCB + X'11') contains a nonzero value.

Procedure for SVC dump

282 z/OS: z/OS DFSMStvs Administration Guide

– The field is only 3 characters long. Ignore the first (left-most) byte. If the abend code appears in
the first 12 bits following the first byte, it is a system abend code. If it appears in the next 12 bits,
it is a user abend code and the value must be converted to decimal.

3. When you determine the ABEND CODE, continue with “Procedure for building the abend keyword” on
page 283.

Procedure for building the abend keyword
Take the following actions to build the abend keyword:

1. Use the ABEND CODE that you have extracted from the system-produced documentation.

System abends are expressed in hexadecimal; user abends are expressed in decimal.

• For a system abend, append the 3-character code to the keyword prefix ABEND.

Example: If the abend code is 0C4, specify the abend type-of-failure keyword as:

ABEND0C4

• For a user abend, append the 4-digit code to the keyword prefix ABENDU.

Example: If the abend code is 0222, specify the abend type-of-failure keyword as follows:

ABENDU0222

2. If a message containing a return code accompanies the abend, include the return code in your
keyword string as a modifier keyword. Append the code (specified exactly as it appears in the
message) to the keyword prefix RC.

Example: If the return code is 04, specify the keyword string as follows:

ABEND0C4 RC04

Tip: If the z/OS MVS System Codes description of the abend code indicates a return code and the
reason code is associated with the abend, including both the return code and the reason code in your
keyword string could restrict the scope of a software database search that results in no matches.

3. If the z/OS MVS System Codes description of the abend code indicates a reason code is associated with
the abend, include the reason code in your keyword string as a modifier keyword. Append the code
(specified exactly as it appears in the register) to the keyword prefix RSN.

Example: If the abend code is X'0F4' then the reason code is found in general register 0. If the reason
code is 0409F023, specify the keyword string as follows:

ABEND0F4 RSN0409F023

4. See z/OS DFSMSdfp Diagnosis (the subcomponent-specific section, if one exists).

Message keyword
Use this topic for all DFSMSdfp message-related problems.

You can identify a message type-of-failure when one of the following conditions occurs:

• Message reports program or operation failure.
• Message is missing data, or contains invalid data.
• Message reports a data failure (catalog, user data).
• No message appears when one should have been issued.

Procedure for SVC dump

Chapter 6. Diagnosing DFSMStvs problems 283

Procedure
Before using this information, examine z/OS MVS System Codes and z/OS MVS System Messages, Vol 1
(ABA-AOM), through z/OS MVS System Messages, Vol 10 (IXC-IZP). These might help you generate
additional keywords by identifying failure-related functions and providing message-to-module cross-
reference tables.

Definitions of message keyword terms

The component-specific message keyword information uses the terms that Table 56 on page 284 defines.

Table 56. Definitions of terms related to message keywords. Definitions of terms related to message keywords

Term Definition

Message identifier A three-letter prefix to identify the component that
produced the message and a message serial number to
identify the individual message (for example, IDC3009I).

Message keyword prefix The characters MSG, to which the message identifier is
appended. This comprises the message type-of-failure
keyword.

Return or reason code A numeric code contained in the message text. Either the
message text or z/OS MVS System Messages, Vol 1 (ABA-
AOM), through z/OS MVS System Messages, Vol 10 (IXC-
IZP), can identify the type of code.

Return or reason code keyword prefix The characters RC, to which each return or reason code
(exactly as it appears in the message) is appended. (Each
code in the text requires its own keyword prefix.) This
comprises a modifier keyword to specify the failure-
related symptom.

Go to one of the procedures that the following table indicates.

Locations of procedures.

Subcomponent Procedure

DADSM/CVAF See z/OS DFSMSdfp Diagnosis.

ISMF See z/OS DFSMSdfp Diagnosis.

OAM See z/OS DFSMSdfp Diagnosis.

SMS See z/OS DFSMSdfp Diagnosis.

VSAM, DFSMStvs, and VSAM RLS record management See “VSAM, DFSMStvs, and VSAM RLS record
management—message keyword” on page 285.

All other DFSMSdfp components See z/OS DFSMSdfp Diagnosis.

1. Append the message identifier to the keyword prefix MSG. Include in the keyword string any return
codes and reason codes from the message text. Append the codes, exactly as they appear in the
message to the keyword prefix RC.

Example: If the message identifier is IDC3009I, the return code is 04, and the reason code is 032, you
would specify the keyword string as follows:

MSGIDC3009I RC04 RS032

Rule: For PDSE-related failures (IGW messages), use RSN as the prefix for reason codes and RC as the
prefix for return codes.

2. Message text might contain additional information that you can use as modifier keywords (function,
subfunction, device-related information, and so forth); record it on the Keyword Worksheet, in z/OS
DFSMSdfp Diagnosis.

Procedure for SVC dump

284 z/OS: z/OS DFSMStvs Administration Guide

3. For input/output or hardware-related errors, review the SYS1.LOGREC for keyword information.
4. See z/OS DFSMSdfp Diagnosis.

VSAM, DFSMStvs, and VSAM RLS record management—message keyword
VSAM record management does not issue any messages directly. However, the results of a record
management request can be translated into a message that the user of record management issues. Use
this information when your program or the system indicates that a VSAM data set is being processed.

Before using this information, examine z/OS MVS System Codes and z/OS MVS System Messages, Vol 1
(ABA-AOM), through z/OS MVS System Messages, Vol 10 (IXC-IZP). These might help you generate
additional keywords because they identify failure-related functions and provide message-to-module
cross-reference tables.

See “Definitions of message keyword terms” on page 284 for definitions of the following terms used in
this topic:

• Message identifier
• Message keyword prefix
• Return or reason code
• Return or reason code keyword prefix

Procedure

1. A damaged data set can cause one of the following messages to be issued by the caller of VSAM
record management or by a system service routine (for example, EOV or IOS) that was invoked by
record management:

• MSGIDC3302I—Action error
• MSGIDC3308I—Duplicate records
• MSGIDC3314I—Out-of-sequence records, missing records, duplicate records, no record found
• MSGIDC3351I—VSAM logic I/O error RC156, RC24, or RC32
• MSGIDC3350I—No record found or incorrect length
• MSGIEC070I—RC32, RC202, RC104, or RC203
• MSGIOS000I—Command reject

2. If the system issues one of these messages while processing a key-sequenced data set (KSDS),
determine whether you have a damaged data set. Issue the IDCAMS EXAMINE command as described
in the information on functional command format in z/OS DFSMS Access Method Services Commands
and the information on checking a VSAM key-sequenced data set cluster for structural errors in z/OS
DFSMS Using Data Sets. The EXAMINE command provides details about the nature of data set damage.

Example: If a damaged data set caused message IDC3302I to be issued, you would specify the
message type-of-failure keyword as follows:

MSGIDC3302I

3. See z/OS DFSMSdfp Diagnosis.

VSAM diagnostic aids
This topic contains overviews of the major diagnostic aids that are provided for VSAM subcomponents and
cites publications that contain more detailed information.

• “Access method services (AMS) diagnostic aids” on page 286.
• “Catalog management diagnostic aids” on page 289.
• “VSAM OPEN/CLOSE/end-of-volume (O/C/EOV) diagnostic aids” on page 291.

VSAM, DFSMStvs,and VSAM RLS record management—message keyword

Chapter 6. Diagnosing DFSMStvs problems 285

• “VSAM record-level sharing diagnostic aids” on page 294.
• “VSAM record management (R/M) diagnostic aids” on page 303.

Access method services (AMS) diagnostic aids
This topic explains the diagnostic aids provided for access method services (IDCAMS), explains how to
find key areas in a dump, and offers suggestions for isolating different types of problems.

The following major diagnostic aids are provided for access method services:

• Trace tables, which provide a trace of the flow of control between modules and within modules
• Dump points, which provide the facility to dump selected areas of virtual storage and make a full region

dump
• The TEST option, which you can set to print out the trace tables or to obtain dumps at selected dump

points if access method services is invoked with a batch job
• Termination codes and full-region dumps, which are produced when the processor detects an

unrecoverable condition

Trace tables

The processor maintains two trace tables during each execution: the intermodule trace table, which
records the flow of control betweenmodules, and the intramodule trace table, which records the flow of
control within modules.

You can find the trace tables in any full region dump, you can print them using the TEST option, or you can
display them on a TSO/E terminal. “TEST option” on page 287 explains how to print the tables in a dump.

Intermodule trace table

The intermodule trace table begins with the characters INTER and contains the IDs of the last 20
modules that had control. The module IDs are the last 4 characters of the module name. For example, if
the trace appears as follows:

INTER ... SA01 EX01 RI01 RI02

then you know that IDCRI02 had control at the time of the dump.

The intermodule trace table is updated by the system adapter not only as each module is entered, but
also upon return from a module. Thus, if RI01 calls TP01 which calls IO01 and then returns back to RI01,
the trace table appears as follows:

INTER ... RI01 TP01 IO01 TP01 RI01

Intramodule trace table

The intramodule trace table begins with the characters INTRA and contains the last 20 trace points
encountered within modules. Each module has trace points placed at key locations, for example, at the
start of procedures and around calls to other modules.

The IDs of the trace points consist of 4 characters: the first 2 characters are the mnemonic identifier of
the module being traced, and the last 2 characters identify a specific point within the module. The
expansion of the UTRACE macro for trace ID DLLC appears as follows:

OLDERID2 = NEWERID2;
NEWID2 = 'DLLC';

Dump points

The IBM Support Center VSAM Customer Support will provide dump point information when a dump of a
region or selected area is required for diagnosing a problem.

Each module has built-in dump points that invoke diagnostic dumping routines if the TEST option is in
effect. The dump points have been placed at key locations in each module (for example, around calls to

VSAM diagnostic aids

286 z/OS: z/OS DFSMStvs Administration Guide

other processor and nonprocessor modules). Each dump point specifies what information will be
dumped. Some dump points allow symbolic dumping of selected areas of virtual storage (for example,
parameter lists or return codes); all dump points allow dumping of the full region and printing of the trace
tables.

Certain access method services modules have the dumping of selected areas of virtual storage built in.
Dump points can be used to dump these selected areas. The areas dumped vary with each dump point
and are identified with descriptive codes.

Dumping of selected areas can occur with or without a full region dump, as described in “TEST option” on
page 287.

TEST option

If you invoked access method services in a batch job, you can use the TEST option to activate the printing
of diagnostic output at selected points within access method services. The TEST keyword controls the
TEST option, as “TEST keyword” on page 287 explains.

The TEST option enables you to print the following information:

• The intermodule and intramodule trace tables.
• Selected areas of virtual storage.
• Full region dump.

Each variation of the TEST option provides an additional level of information. The possible variations
follow:

• Print the trace tables only
• Print the trace tables and selected areas of virtual storage
• Print the trace tables and selected areas of virtual storage and take a full region dump.

TEST keyword

You can enter the TEST keyword either in the PARM field of the EXEC card that invokes the processor, or
on a PARM command. By using the PARM command, you can turn the TEST option on and off or change
the TEST option for different function commands.

The format of the PARM command follows.

The format of the PARM command

Command Parameters

PARM [TEST({[TRACE]

 [AREAS (areaid [areaid...])]

 [FULL ((dumpid [begin [count]]) [(dumpid...)....])]|

 OFF})]

where:
TEST({[TRACE] [AREAS (areaid[areaid...])] [FULL ((dumpid[begin [count]]) [(dumpid...)...])]| OFF})

Specifies the diagnostic aids to be used. After the TEST option has been established, it remains in
effect until it is reset by another PARM command. The TRACE, AREAS, and FULL parameters may be
used concurrently.

TRACE
Specifies that trace tables are to be listed whenever the built-in dump points of the processor are
encountered.

AREAS(areaid [areaid...])
Identifies modules that are to have selected variables dumped at their dump points. areaid is a 2-
character area identifier defined within the implementation.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 287

FULL ((dumpid [begin [count]]) [(dumpid...)....])
Specifies that a region dump, as well as the trace tables and selected variables, is to be provided at
the specified points. dumpid specifies the 4-character identifier of the dump point.
begin

A decimal integer that specifies the number of times the program is to go through the dump point
before beginning the dump listing. The default is 1.

count
A decimal integer that specifies the number of times through the dump point that dumps are to be
listed. The default is 1.

If the FULL keyword is used, an AMSDUMP DD statement must be provided. For example:

//AMSDUMP DD SYSOUT=A

OFF
Specifies that testing is to stop.

Each time a PARM command is specified, the TEST parameters override the TEST parameters in effect
from the previous PARM command.

Figure 10 on page 289 shows a portion of the output from the command:

PARM TEST (FULL (LCTP,2,1))

and a portion of the dump produced.

The trace tables and the selected area, DARGLIST, are printed each time the dump point LCTP is
encountered. A full region dump is produced the second time that dump point LCTP is encountered.

How to use the TEST option

If a problem occurs and you have no idea which modules are involved, run the job again with the TRACE
keyword. From the intermodule trace table you can identify the modules involved. The TRACE keyword,
however, produces a large amount of output.

If you suspect that specific modules are involved, you can rerun the job with the AREAS keyword and
specify the identifiers of several suspected modules. You will obtain trace output only for the specified
modules.

When VSAM Customer Support identifies the the dump points at which a full dump should be made, rerun
the job with the FULL keyword. The AREAS and FULL keywords can be used in combination to obtain trace
tables and selected areas throughout several modules, but a full region dump will be taken only at
selected points.

VSAM diagnostic aids

288 z/OS: z/OS DFSMStvs Administration Guide

Figure 10. Example of TEST option output

Catalog management diagnostic aids
The DIAGNOSE command output is designed to help you diagnose catalog management problems.

Illustrations of catalog records follow, in the format in which they would be displayed after execution of
the DIAGNOSE command.

The following illustration shows a VSAM sphere record for a KSDS data set:

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 289

The following illustration shows a GDG sphere record consisting of a base record and 10 subrecords (as
indicated in the generation aging table cell):

VSAM diagnostic aids

290 z/OS: z/OS DFSMStvs Administration Guide

VSAM OPEN/CLOSE/end-of-volume (O/C/EOV) diagnostic aids
The following major diagnostic aids are provided for VSAM O/C/EOV:

• A description of the GTF trace facility, which is used to trace VSAM O/C/EOV activity
• A description of failure-related messages that are issued by VSAM O/C/EOV and the function codes that

they contain.

The diagnostic aids and return codes that are described in this topic are also applicable when RLS is
active.

Generalized trace facility

Use the generalized trace facility (GTF) to obtain diagnostic information during the processing of VSAM
Record Management (R/M). If GTF is active, and either TRACE= (record management tracing) is specified
in your DD statement, VSAM GTF trace records, X'FF5' are written to the GTF data set.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 291

VSAM GTF X'F61' record

The VSAM GTF X'F61' was designed to provide a method for tracing I/O activity for data in a shared
resource pool. This GTF record is not supported for VSAM RLS.

Considerations for requesting X'F61' records

These items should be considered when you request X'F61'records:

• GTF must be started with the USRP (or USR) parameter specified with an event identifier of X'F61'.
• GTF X'F61' records will only be generated for those jobs processed with VSAM LSR or GSR.
• If the ATTACH macro is used, the SZERO=YES parameter must be coded.

Mapping of the X'F61' record

The X'F61' record is an information record to be used for specialized purposes. Because of its
dependence on detailed design and implementation, IBM might change the mapping of the record with
new product releases or versions or as a result of service. The following table gives detailed information
about the X'F61' record.

Table 57. X'F61' record information. X'F61' record information

Offset Name Length Description

0(X'00') ASCB 4 ASCB address

4(X'04') JOBNAME 8 Jobname

12(X'0C') ASID 2 Current ASID

14(X'0E’) REQ_TYPE 1 Type of request

15(X'0F') SHR_POOL 1 LSR resource pool ID

16(X'10') CI 4 Requested CI

20(X'14') 4 Reserved

24(X'18’) FLAGS 1 Processing flags
Bit

Meaning when set
0

GSR (LSR if OFF)
1

Index (data if OFF)
2

CI found in Hiperspace or read from DASD
(CI found in address space buffer pool if
OFF)

3
CI found in Hiperspace

4 – 6
Reserved

7
Cross-System Share Option 4 (share
option 3 if OFF)

VSAM diagnostic aids

292 z/OS: z/OS DFSMStvs Administration Guide

Table 57. X'F61' record information. X'F61' record information (continued)

Offset Name Length Description

25(X'19') XREG_SHROPT 1 Cross-Region Share Options

• SHR(1)=X'01'X
• SHR(2)=X'02'X
• SHR(3)=X'03'X
• SHR(4)=X'04'X

26(X'1A') CISIZE 2 CI size for the component

28(X'1C') DSNAME 44 VSAM component name

72(X'48') VOLSER 6 Volume serial for the component

78(X'4E') BUFRSIZE 2 Buffer size

80(X'50') TRANSID 1 RPL transid

81(X'51') RECLEN 3 Record length

Interactive problem control system (IPCS)

The interactive problem control system (IPCS) provides installations with an interactive, online facility for
diagnosing software failures. Using unformatted dumps, IPCS formats and analyzes them to produce
reports that you either view at the terminal or print. As you examine the dump of a software failure, IPCS
accumulates information about the dump. IPCS uses the information it gathers each time you process the
dump.

See z/OS MVS IPCS User's Guide for information on how to use IPCS and z/OS MVS IPCS Commands for
information on the IPCS commands and examples.

For product information and programming requirements needed to use IPCS, customize access to IPC
and examples on writing exit routines, see z/OS MVS IPCS Customization.

IPCS enables you to analyze these types of dumps:

• System dumps

– ABEND dumps
– SVC dumps
– Stand alone dumps.

Tip: System dumps might include GTF trace data.
• Live system storage
• External GTF trace information written to direct access or tape storage devices

Printing GTF records

You can use the GTFTRACE subcommand of IPCS to format and print GTF records contained in a dump or
a trace data set. GTF trace records can be formatted interactively in an IPCS session or in batch mode.
You can select the kinds of trace data you want to process by using the appropriate trace data selection
keywords.

This example creates a formatted report of the GTF trace records for SVC events:

 gtftrace svc

The following two examples create a formatted report of the GTF trace record for VSAM R/M control
blocks.

Interactively in an IPCS session:

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 293

1. The IPCS dump source is the trace data set (via DDNAME or DSNAME).
2. Enter the IPCS subcommand:

 GTFTRACE USR(AM01)

When using batch mode, you need to specify the name of the input trace data set and the names of the
three output data sets in the JCL, as shown:

Input

Trace data set 'SYS1.TRACE'(TRACE DD)

Output

• IPCS dump directory data set (IPCSDDIR DD)
• Formatted output (IPCSPRNT DD)
• TSO/E messages (SYSTSPRT DD)

IPCSPRNT, the IPCS print file, contains the dump or trace output. The SETDEF PRINT subcommand tells
IPCS to direct output to the IPCS print file. The SETDEF TERMINAL subcommand tells IPCS to direct
output to the SYSTSPRT file. TSO/E messages and some IPCS messages are directed to SYSTSPRT even if
SETDEF PRINT NOTERMINAL was entered.

The IPCSDDIR dump directory data set is a VSAM indexed cluster that IPCS uses to store information.
Usually, the dump directory is used internally by IPCS and IPCS formatting routines but there are
subcommand interfaces for you to store and delete information. See z/OS MVS IPCS User's Guide for more
information about the IPCSPRNT, SYSTSPRT, and IPCSDDIR files.

//JOBNAME JOB ,accounting
//STEP1 EXEC PGM=IKJEFT01,REGION=4096K,DYNAMNBR=50
//IPCSDDIR DD DSN=IPCSU1.DUMP.DIR.DISP=SHR
//TRACE DD DSN=SYS1.TRACE,UNIT=293,VOL=SER=338003,DISP=SHR
//IPCSTOC DD SYSOUT=*
//IPCSPRNT DD SYSOUT=*
//SYSTSPRT DD SYSOUT=*
//SYSTSIN DD *
 IPCS
 SETDEF NOCONFIRM PRINT NOTERMINAL DDNAME(TRACE)
 DROPDUMP
 GTFTRACE USR(AM01)
 DROPDUMP
 END
 /*

VSAM OPEN/CLOSE/End-of-Volume return and reason codes
VSAM O/C/E macros return to their caller return codes set in register 15 and reason codes set in the
access method control block (ACB) ACBERFLG field (1 byte at ACB + X'31').

VSAM record-level sharing diagnostic aids
This topic explains the diagnostic aids provided for VSAM record-level sharing (RLS) and offers
suggestions for isolating different types of problems.

The following diagnostic aids and types of problems are discussed:

• VSAM RLS component trace
• VSAM RLS IPCS processing
• VSAM RLS SMSVSAM abends
• VSAM RLS server recycle and reactivation
• Console dumps
• SMSVSAM initialization errors
• Problems sharing control

VSAM diagnostic aids

294 z/OS: z/OS DFSMStvs Administration Guide

• VSAM RLS hang conditions
• VSAM RLS deadlock and timeout problems

When RLS is active, the return codes for VSAM O/C/EOV and record management macros are still
applicable. See “VSAM OPEN/CLOSE/End-of-Volume return and reason codes” on page 294 and “VSAM
record management return and reason codes” on page 314 for a list of these return codes and their
explanations.

VSAM RLS component trace

DFSMSdfp provides a trace service for use with all functions provided by VSAM RLS. When the tracing is
activated, a trace table is created in the VSAM RLS address space.

This trace facility is also used by other functions. Specific trace options for other functions are described
in their sections.

You can use SYS1.PARMLIB member CTncccxx to specify trace options for the TRACE CT command and to
turn off tracing. CTncccxx must exist at IPL for tracing to be available on the system. The default is
CTISMS00. For more information on using CTncccxx to specify tracing options, see z/OS MVS Initialization
and Tuning Reference.

Trace also enables external writers (WTR) to capture trace buffers. Capturing trace buffers increases
diagnostic capability and decreases the possibility of losing trace data.

For complete syntax and usage information for TRACE, see z/OS MVS System Commands.

TRACE command for VSAM RLS component trace

The syntax of the TRACE command for tracing the VSAM RLS component follows: TRACE
CT,WTRSTART=membername or TRACE CT,WTRSTOP=membername or TRACE CT,ON|nnnK|nnnM|
OFF,COMP=SYSSMS,PARM=CTISMSxx-->

PARM=CTISMSxx identifies the SYS1.PARMLIB member that contains the tracing options.

The default SYSSMS trace table size is 72 KB.

The nnnK or nnnM keywords can be used to specify trace table sizes of 16–999 KB or 1–2047 MB,
respectively.

You are then prompted to specify the trace options to be in effect. You must respond with the REPLY
command, using the following syntax: REPLYid ,JOBNAME=SMSVSAM ,ASID=(smsvsam-
asidlist.) ,OPTIONS=(namename...) ,WTR=procname|DISCONNECT ,END-->

Note:

1. The id value is the identification number, 0-99, specified in the prompting message.
2. The REPLY may be continued on multiple lines; the END must be given as the final parameter to

identify the end of the REPLY.
3. OPTIONAL (only needed when using CTRACE WRITER) - Create a member in SYS1.PROCLIB to

allocate a CTRACE WRITER data set(s). For an example procedure, see z/OS MVS Initialization and
Tuning Reference. The name of the procedure is the name specified when starting the trace writer. For
example, to start the trace writer with a procedure named CTWDASD, issue the following command:

TRACE CT,WTRSTART=CTWDASD

The TRACE and REPLY commands are fully described in z/OS MVS System Commands

Trace options

Table 58 on page 296 shows the valid options for use with this trace facility.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 295

Table 58. Valid trace facility options. Valid trace facility options

Trace event Description

ENTRY All module entries.

EXIT Module exits with nonzero return codes only.

EXITA All module exits.

CALL Equivalent to specifying both ENTRY and EXIT.

UEXIT Entries and exits of user exits.

RRTN Entries and exits of recovery routines.

CB Control block changes.

POST Usage of certain MVS services.

SPECIAL Entries and exits of commonly shared functions.

SUSP Suspension or resumption of a work unit.

CONFIG Configuration changes.

RLS1 Special purpose trace event for use under specific IBM programming support
direction.

RLS2 Special purpose trace event for use under specific IBM programming support
direction.

RLS3 Special purpose trace event for use under specific IBM programming support
direction.

RLS4 Special purpose trace event for use under specific IBM programming support
direction.

RLS5 Special purpose trace event for use under specific IBM programming support
direction.

DLKPD Deadlock/timeout/retained-lock problem determination trace event.

COMP=(SMSVSAM) Specifies all the functional areas of VSAM RLS component.

SUBCOMP=(component- list) Specifies specific subcomponents within the VSAM RLS component.

The following terms designate the subcomponents of VSAM RLS:

The subcomponents of VSAM RLS

Name Name Name Name

BLC SHM SQM VSS

CERS SLCH VOC

SCM SMLS VQUI

SHC SMPM VRM

Note:

1. You can also specify ALL rather than list the COMP or SUBCOMP keywords.

COMP=(SMSVSAM) is equivalent to specifying ALL subcomponents. However, in most cases you would
trace only the specific subcomponents.

2. The SUBCOMP keyword can be specified without the COMP keyword.
3. Any of these options except for ALL, COMP, and SUBCOMP can be turned off by prefixing them with NO

(for example, NOVOC, NOSLCH).

The following command turns off the trace facility:

VSAM diagnostic aids

296 z/OS: z/OS DFSMStvs Administration Guide

TRACE CT,OFF,COMP=SYSSMS

Here are some examples of typical replies to activating the SMS trace:

• Trace record management entry/exit

 R XX,OPTIONS=(ENTRY,EXITA,SUBCOMP=(VRM)),WTR=CTWDASD,END

• Trace deadlock/timeout problem determination information

 R XX,OPTIONS=(DLKPD,SUBCOMP=(VRM)),WTR=CTWDASD,END

If special trace code were provided for RLS1, the following would be recommended by IBM programming
support to utilize that special trace code:

 R XX,OPTIONS=(RLS1,SUBCOMP=(VRM)),WTR=CTWDASD,END

Formatting the VSAM RLS component trace table

There is no mechanism to flush trace buffers in storage to the trace writer data sets. So, in addition to
having trace writer data sets available, a storage dump of the SMSVSAM address space and data space is
required. If the problem being traced does not result in a dump the MVS DUMP command can be used to
produce an SVCDUMP-type dump containing the trace buffer data. For a complete description of this
service, see z/OS MVS IPCS Commands.

It is possible with a sufficiently large trace table (8M recommended, use 16M if possible) that there is no
data in the trace writer data sets.

The IPCS CTRACE command is used to format and view the information in the component trace writer
data sets and the trace buffers in storage:

 CTRACE COMP(SYSSMS) FULL LOCAL

SMSVSAM abends

Abends in the SMSVSAM address space can be identified by COMPID=DF122. The dump title (also
available in syslog) contains:

• COMPID=DF122
• CSECT and offset of the instruction in error
• Compile date and maintenance level of the CSECT
• The abend code
• Return and reason codes

When the failing CSECT cannot be identified, ???? will appear in the dump title for the CSECT name.

In some cases you can identify the failing CSECT using IPCS option 6, ST command to find :

• The failing PSW
• The general purpose registers and ARs
• The calling sequence

Use the panel provided by the IPCS IGWFPMAN to run option Q to find the calling sequence.

Note: This procedure might not provide information for all abends.

Activation of the SMSVSAM address space

The SMSVSAM address space automatically starts at IPL if the RLSINIT (YES) keyword is specified in the
IGDSMSxx member of SYS1.PARMLIB. You can also start the SMSVSAM address space after IPL by
issuing the following command from the MVS console:

V SMS,SMSVSAM,ACTIVE

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 297

Termination of the SMSVSAM address space

To terminate the SMSVSAM address space, issue the following command from the MVS console:

V SMS,SMSVSAM,TERMINATESERVER

Use the VSMS,SMSVSAM,TERMINATESERVER command before you partition a system out of the XCF
Sysplex. Failure to do so can result in unexpected abends in the SMSVSAM address space.

To terminate and automatically restart the SMSVSAM address space, issue the following command from
the MVS console:

FORCE SMSVSAM,ARM

You should use the FORCE SMSVSAM,ARM command if the SMSVSAM address space did not teminate
successfully with the V SMS,SMSVSAM,TERMINATESERVER command. In this case, make a console
dump of the hung SMSVSAM address before you issue the FORCE SMSVSAM,ARM command and report
the problem to your IBM representative.

The SMSVSAM address space automatically terminates and restarts after detecting fatal internal errors. If
this situation occurs, report the failure, along with any dumps that were produced, to your IBM
representative.

After any six consecutive restarts of the SMSVSAM address space, the system issues message IGW418D,
which prompts the MVS operator for a reply to cancel or to continue with SMSVSAM initialization.

Console dumps

Console dumps that are generated when VSAM RLS is running will contain the SMSVSAM address space,
its data spaces, and the catalog address space.

For example:

 DUMP COMM=(EXAMPLE OF SMSVSAM DUMP)
 R nn,JOBNAME=(SMSVSAM,CATALOG),CONT
 R nn,DSPNAME=('SMSVSAM'.SMSVSAM,'SMSVSAM'.MMFSTUFF),END

SMSVSAM initialization errors

Message IGW414I is issued when the SMSVSAM server initializes successfully.

When initialization is not successful, use the D SMS,SMSVSAM command to gather data that can be used
to determine the cause of failure.

You can use Table 59 on page 298 as a guide to what actions to take for specific initialization problems.

Table 59. Initialization errors. Guide to what actions to take for specific initialization problems

Symptom Action

Server cannot successfully connect to the lock
structure, IGWLOCK00.

Save the output from the following command:

 D XCF,STR,STRNAME=IGWLOCK00

Connectivity is not available. If you have another Coupling Facility available, initiate a
rebuild to cause the lock structure to become resident in
the other lock structure.

If a rebuild cannot be done, SMSVSAM will not initialize
until the connectivity problem is resolved.

Waiting for replies from other systems. 1. Dump the SMSVSAM address spaces from all the
systems in the Parallel Sysplex.

2. Recycle SMSVSAM address spaces on the systems
that have not replied.

VSAM diagnostic aids

298 z/OS: z/OS DFSMStvs Administration Guide

Table 59. Initialization errors. Guide to what actions to take for specific initialization problems (continued)

Symptom Action

Structure does not exist. If possible, modify your policy to allow the lock structure
to be defined.

The SMSVSAM address spaces should attempt to
reconnect when they are notified that a new policy is in
place. If they do not reconnect, you might want to
recycle all the servers.

Other problems that occur during initialization. Take a console dump of the SMSVSAM address space on
all systems and contact IBM's Customer Support for
problem diagnosis.

Sharing-control problems

Problems in sharing control are usually indicated by abends in the IGWXSxxx modules or by incorrect
output from the SHCDS command.

Contact IBM's Customer Support when you have the following documentation:

• DFSMSdss dump of the active sharing-control data sets
• Abend dumps
• Syslog
• SHCDS command output
• Console dump (only when the SHCDS command output is incorrect)

The example job for obtains a DFSMSdss dump of the sharing-control active data set. Change the OUT
and DUMP statements as appropriate.

 //DMPSHCDS JOB ...
 //* JOB TO DSS DUMP SHARING CONTROL ACTIVE DATA SET. CHANGE JOB
 //* AND OUT DD STATEMENTS AS APPROPRIATE.
 //DSSDMP EXEC PGM=ADRDSSU,REGION=4M
 //SYSPRINT DD SYSOUT=H
 //OUT DD DSN=DUMP.SHCDS,DISP=(,KEEP),UNIT=CART,
 // VOL=SER=CART01,LABEL=(1,SL)
 //SYSIN DD *
 DUMP DS(INCLUDE(SYS1.DFPSHCDS.ACTIVE.SPLXPK)) SHARE -
 TOLERATE(ENQFAILURE) -
 OUTDD(OUT)

VSAM RLS hang conditions

Should a hang condition occur, you can generate dumps of the following spaces from all systems:

• SMSVSAM address space
• SMSVSAM dataspace
• Catalog address space

The following example shows how to generate a dump SYS01 for systems SYS01, SYS02, and SYS03.

 SYS01 DUMP COMM=(MULTI SYSTEM DUMP)
 SYS01 R nn,JOBNAME=(SMSVSAM,CATALOG),CONT
 SYS01 R nn,REMOTE=(SYSLIST=(SYS02,SYS03)),CONT
 SYS01 R nn,DSPNAME=('SMSVSAM'.SMSVSAM,'SMSVSAM'.MMFSTUFF),END
 SYS01 R nn,DSPNAME=('SMSVSAM'.*),END

To get all data spaces, use .* as the last line of the example shows.

You might need to dump one or more of the users' address spaces if it appears that they are involved in
the hang condition.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 299

IBM's Customer Support might request a report of the active threads. Invoke IPCS IGWFPMAN and run
options 1 and 2 to obtain a summary of TCBs running in the SMSVSAM address space and the users'
requests that were active at the time of the failure.

VSAM RLS deadlock and timeout problems

Deadlock or timeout errors in SMSVSAM will cause CICS to issue messages DFHFC0164, DFHFC0165,
DFHFC0166, and DFHFC0167. They should provide enough information to determine the cause of the
problem.

If additional information is needed, the CICS FC level 2 trace will provide the VPDI (mapped by IFGVPDI).
The VPDI is the source of the information provided in the CICS messages. The SMSVSAM trace
OPTIONS=DLKPD can be used to trace the VPDI.

Note: The information returned in the VPDI can be out of date. There is a lag between the time the
problems are detected and the request fails. For a timeout, information on the blocking holder might not
be returned because that request completed before the information could be extracted.

VSAM record-level sharing return and reason codes
This topic describes the return codes from SMSVSAM, SMPM_CFPurge, and SMPM_CFQuery.

Return codes from SMSVSAM

The SMSVSAM address space is the server for VSAM RLS.

The following return and reason codes from SMSVSAM might appear in messages issued by CICS,
CICSVR, and DFSMSdss. They might also include ERRDATA, that can be used to explain the return and
reason code information.

For return codes from VSAM O/C/EOV and record management macros, see “VSAM OPEN/CLOSE/End-of-
Volume return and reason codes” on page 294 and “VSAM record management return and reason codes”
on page 314.

Contact IBM Customer Support for errors with return code DEC 36 (X'24'). A system dump might have
been taken.

Return code 4 is given for information errors.

Return code 8 can indicate an error using the SMSVSAM interfaces (application logic error) or setup
problems (such as missing RACF authority).

Server-not-available type errors indicate that the SMSVSAM server was not active at the time the request
was made, and are not an error condition.

Table 60. SMSVSAM return and reason codes. SMSVSAM return and reason codes

Return code Reason code Explanation

4 X'60EF0008' There are no locks to bind or unbind.

4 X'61FF0000' The request is successful, but non-RLS mode is established.

4 X'61FF0011' The request is successful, RLS mode established. Other
connectors constant.

4 X'61FF0012' The request is successful, RLS mode established. Lost locks
constant.

4 X'61FF0013' The request is successful, RLS mode established. Retained locks
constant.

4 X'61FF0014' The request is successful, No quiesce operation is performed.
System is in local mode (as opposed to sysplex mode). Local
mode constant.

8 X'60FF0001' Request to connect a subsystem that is already active in the
Parallel Sysplex.

VSAM diagnostic aids

300 z/OS: z/OS DFSMStvs Administration Guide

Table 60. SMSVSAM return and reason codes. SMSVSAM return and reason codes (continued)

Return code Reason code Explanation

8 X'60FF0002' Request to connect an online application, which is already
connected as a batch application.

8 X'60FF0003' Request to connect/disconnect an online application, subsystem
name was not passed.

8 X'60FF0004' Request to connect or disconnect an online application, and the
subsystem name has an invalid format.

8 X'60FF0005' Request to connect an online application, and no quiesce exit was
provided.

8 X'60FF0006' Application is not authorized to the RACF SUBSYSNM class.

8 X'60FF0007' Unable to obtain virtual storage.

8 X'60FF0008' The subsystem name specified is not registered.

8 X'60FF0009' Attempt to disconnect an online application, but the application
has OPEN RLS ACBs.

8 X'60FF000A' Attempt to connect or disconnect an online application, and a
control ACB was not passed.

8 X'60FF000B' SMSVSAM server is not available

8 X'60FF000C' Connect or Disconnect request issued in invalid mode (e.g. SRB
mode instead of TCB mode)

8 X'60FF000D' Application has been canceled.

8 X'61FF0001' Catalog Locate Failure for the specified sphere. ERRDATA contains
additional information

8 X'61FF0002' The specification is not an SMSVSAM data set.

8 X'61FF0003' A Quiesce operation is already in progress for this sphere. Would
occur if two DFSMSdss jobs concurrently tried to dump the same
sphere.

8 X'61FF0004' A batch application has the sphere open for output and this is an
attempt to take a non-BWO copy.

8 X'61FF0005' Request was not issued in supervisor state.

8 X'61FF0007' The request to copy/dump has been canceled.

8 X'61FF0008' The request type is not supported.

8 X'61FF0009' Virtual storage was not available.

8 X'61FF000A' SMSVSAM server was not available.

8 X'61FF000B' The copy is not valid, since the SMSVSAM server failed during the
copy.

8 X'61FF000C' The task which issued the request already has an active non-RLS
open for the sphere.

8 X'61FF000D' Request to terminate the operation, but there is no operation in
effect

8 X'61FF000E' Request mismatch.

8 X'61FF000F' Request to terminate the operation, but the operation is being
canceled.

8 X'61FF0010' There is a non-RLS quiesce active within this address space. The
situation across the sysplex is unknown.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 301

Table 60. SMSVSAM return and reason codes. SMSVSAM return and reason codes (continued)

Return code Reason code Explanation

8 X'60EF0001' Error accessing sharing control. ERRDATA has qualifying
information.

8 X'60EF0002' Catalog locate failed. ERRDATA contains qualifying information.

8 X'60EF0003' The requestor does not have update authority to the sphere.

8 X'60EF0004' The request passed an invalid ACB.

8 X'60EF0005' The request did not specify an SMS VSAM data set.

8 X'60EF0006' The request was issued in an invalid mode.

8 X'60EF0009' No virtual storage.

8 X'60EF000A' Invalid request parameter list.

8 X'60EF000B' Open for output failed. ERRDATA contains qualifying information.

8 X'60EF000C' Dynamic allocation failure. ERRDATA contains qualifying
information.

8 X'60EF000D' Dynamic unallocation failure. ERRDATA contains qualifying
information.

8 X'60EF000E' Open failure. ERRDATA contains qualifying information.

8 X'60EF000F' Close failure. ERRDATA contains qualifying information.

8 X'60EF0010' Incorrect parameter list passed.

8 X'60EF0011' Number of clusters in original sphere and restored sphere do not
match.

8 X'60EF0012' Recovery required expected, but was not set. ERRDATA contains
qualifying information.

8 X'60EF0013' Request issued in invalid mode.

8 X'60EF0014' Data set not found.

8 X'60EF0015' An RLS cell does not exist. The operation cannot be performed.

36 Varies Severe error. ERRDATA contains qualifying information.

Return codes from SMPM_CFPurge

Table 61 on page 302 shows the return and reason codes that the SMPM_CFPurge interface can return.

Table 61. SMPM_CFPurge return and reason codes. SMPM_CFPurge return and reason codes

Return code Reason code Explanation

4 X'64xxFA10' Request completed successfully. Retained locks were not purged as
part of the request, and recovery is required.

4 X'64xxFA12' Request completed successfully. Retained locks were purged as part
of the request, and recovery is required.

4 X'64xxFA1E' Request completed successfully. No purge was necessary because
the system is not using VSAM RLS.

4 X'64xxFA1F' Request completed successfully. No purge was necessary because
the system is not running in Parallel Sysplex mode.

4 X'64xxFA20' Request completed successfully. Retained locks were purged as part
of the request.

VSAM diagnostic aids

302 z/OS: z/OS DFSMStvs Administration Guide

Table 61. SMPM_CFPurge return and reason codes. SMPM_CFPurge return and reason codes (continued)

Return code Reason code Explanation

8 X'64xxFA0E' The base cluster name passed was not found in the catalog. No CF
Cache information is retained for this sphere.

8 X'64xxFA0F' An open sphere prevented the operation from completing.

8 X'64xxFA11' Locks were held and the request specified SMPM_Fail.

36 Varies. Severe error. ERRDATA contains qualifying information.

Return codes from SMPM_CFQuery

The return and reason codes shown in Table 62 on page 303 can be returned from the SMPM_CFQuery
interface.

Table 62. SMPM_CFQuery return and reason codes. SMPM_CFQuery return and reason codes

Return code Reason code Explanation

4 X'64xxFA1E' Request completed successfully. No query was necessary because
the system is not using VSAM RLS.

4 X'64xxFA1F' Request completed successfully. No query was necessary because
the system is not running in Parallel Sysplex mode.

8 X'64xxFA0E' The base cluster name passed was not found in the catalog. No CF
Cache information is retained for this sphere.

36 Varies. Severe error. ERRDATA contains qualifying information.

VSAM record management (R/M) diagnostic aids
The following major diagnostic aids are provided for record management:

• Explanations of how to analyze exclusive control errors and physical I/O errors
• Explanations of how to analyze ABEND0CX errors
• An explanation of how to diagnose and recover from damaged indexes and damaged data control

intervals
• A description of the record management trace facility
• A description of record management return codes.

Control block information

VSAM R/M uses two types of control blocks:

• User control blocks (RPL, ACB, and EXLST)
• Control blocks built for record management by VSAM OPEN (all other control blocks).

The RPL's RPLFDBWD field (4 bytes at offset X'0C') provide valuable failure-related codes. For
descriptions of the return codes and reason codes, see “Understanding VSAM macro return and reason
codes” on page 167.

The VSAM SNAP dump facility provides hexadecimal listings of some control blocks and data areas. To
obtain a SNAP dump, perform one of the following tasks:

• Code the SNAP macro with the SDATA=CB option (described in z/OS MVS Programming: Authorized
Assembler Services Reference SET-WTO).

• Specify this option to ABDUMP via the CHNGDUMP operator command or the IEAABDnn or IEADMPnn
members of SYS1.PARMLIB.

The SNAP dump facility is only available at SYSABEND time.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 303

UPAD exit or WAITX

If a UPAD exit is provided (RPLWAITX flag - bit 5 at RPL +X'29') for a deferred request, VSAM takes the
UPAD exit for event completion. When the request can be restarted, VSAM takes the UPAD exit for a POST
if in cross-memory or SRB mode. If not in cross-memory or SRB mode, VSAM issues a POST SVC. The
user-provided UPAD exit must return control to the posted request in VSAM at the point just following
where control was given to the UPAD WAIT exit. For more information about UPAD and WAITX, see z/OS
DFSMS Using Data Sets.

VSAM RLS does not support UPAD exits.

RLSWAIT exit

For synchronous VSAM RLS requests only, by specifying RPLWAITX the application can provide an
RLSWAIT exit that issues WAIT for the completion of the request. When the request is completed, VSAM
POSTs the request. The RLSWAIT exit ensures the ECB is marked POSTed before returning to VSAM. Note
that RLSWAIT is entered only for a request completion wait, never for a resource or I/O completion wait.
See z/OS DFSMS Using Data Sets for more details.

Error conditions

VSAM R/M returns to its caller return codes in register 15 and feedback words set in the request
parameter list (RPL + X'0C'). For a description of such codes, see “Understanding VSAM macro return and
reason codes” on page 167.

When diagnosing a problem, record the 4-byte RPL feedback word on the keyword worksheet in z/OS
DFSMSdfp Diagnosis. Append the 4-byte field to the keyword prefix RC.

Example: The RPL feedback word is 2D08009C; specify this modifier keyword as shown:

 RC2D08009C

The IBM Support Center can use these codes to determine which module is in control and the reason the
error occurred. You can use the codes in the RPL feedback word with other portions of the VSAM record
management diagnostic aids to obtain additional failure-related information. The IBM Support Center
may request an additional dump using the SLIP service aid to trap the error code when it is being set by a
module.

The RPL feedback word is located at offset 12 (X'0C') in the RPL and contains the following information.

Information in RPL feedback word

RPL Length Description

12(X'0C') 1 Problem determination function (PDF) code. This helps identify the module
that detected the error.

13(X'0D') 1 RPL return code. This code is returned in register 15.

14(X'0E') 1 Component code. This code identifies the component being processed
when the error occurred.

15(X'0F') 1 Reason code. This code, when paired with the return code in the second
byte previous, identifies the reason for an error.

VSAM diagnostic aids

304 z/OS: z/OS DFSMStvs Administration Guide

When analyzing a problem involving record management, consider the following items:

• What kind of application program was running when the error was encountered?

– User application
– IMS application
– CICS application
– CICS running under IMS.
– System function (SMF/catalog)
– Other application.

• What was the application program attempting to do when the error occurred?
• What were the request options? (Get/Put, Dir/Seq, Syn/Asy, and so forth).
• Where, within record management, was the error encountered?

– Abend type-of-failure: use failing PSW instruction address.
– Wait type-of-failure: use information from the RB that issued the Wait SVC.
– RPL feedback error (RPL +X'0C'): See “Understanding VSAM macro return and reason codes” on page

167.
• What was record management attempting to do when the error occurred?

– If the failure-related documentation is produced while record management is processing, you can
use the PLH R14 push-down stack to identify the function being performed when the failure
occurred.

• Is the data set damaged?

– You may use the EXAMINE command to analyze a data set's integrity (whether it is damaged or not).
If a data set is damaged, EXAMINE provides details about the nature of the damage. See the chapter
describing functional command format in z/OS DFSMS Access Method Services Commands for details
about the EXAMINE command.

Exclusive control error analysis

If a second request requires a record that is in a buffer in which a previous request is positioned, the
second request might fail with an exclusive control error (RPLERRCD field at RPL +X'0F' = X'14'). If a
message area is provided in the second RPL, VSAM record management returns the address of the RPL
that has the position of the resource in the message area of the second RPL. You are responsible for
relinquishing position in the initial RPL before redriving the second RPL.

An exclusive control conflict might also arise if an initial request causes a CI or CA split. A second request
might receive RPLERRCD = X'14' as just mentioned, if it needs a record in the same CI or CA. You should
either wait for completion of the request whose RPL is pointed to by the second RPL's message area, or
issue "ENDREQ" against the RPL pointed to by the second RPL's message area before redriving the
second request.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 305

ABEND0CX error analysis

The dump analysis procedure used for a record management ABEND0CX is essentially the same as that
used for other DFSMS components. First, locate the registers at the time of the abend and the address at
which the abend occurred. Using a listing of the failing module, determine the reason for the abend. You
can use the PLH R14 push-down stack to determine the flow of the request through record management.

Damaged data sets (Non-RLS access)

If multiple systems share a data set and you fail to run an explicit VERIFY before opening the data set for
output from either system (distinct from the implicit VERIFY initiated by VSAM Open), you may cause
data set damage.

Determining which data set might be damaged

If you have a dump resulting from an ABEND0C4 in load module IDA019L1, or a console dump of a wait
or loop with the PSW pointing into load module IDA019L1, then you can find the data set name (DSN) in
the area pointed to by register 3. In most cases, Register 3 points to the AMB, and the data component
name appears at offset X'88' into the AMB.

If you suspect a wait or loop in record management and the registers do not point into load module
IDA019L1 (indeed, the symptoms of the dump seem to indicate a problem external to record
management, for example, CICS waits), you can locate the AMB by using the RPL. Figure 11 on page 306
shows how to do this:

Figure 11. VSAM record management—how to find a damaged data set

Note: Because of its dependency on design and implementation, the control block offsets may change in
new product releases or versions as a result of service.

RLS has a different structure. The user's RPL at RPL+4 points to another RPL in the VSAM server address
space. The ACB, AMBL, and AMB are all in the VSAM server address space.

Damaged indexes

If the index component of a key-sequenced data set (KSDS) is damaged, the system may indicate the
problem in any of several different ways. These include:

• Abends
• Loops
• Waits
• Missing records
• Duplicate records
• Out-of-sequence records.

Table 63 on page 306 lists typical symptoms of a damaged data set when IDCAMS detects the damage.

• Messages

Table 63. Messages that IDCAMS detects. Messages that IDCAMS detects

Message ID Condition

MSGIDC3302I Action error

VSAM diagnostic aids

306 z/OS: z/OS DFSMStvs Administration Guide

Table 63. Messages that IDCAMS detects. Messages that IDCAMS detects (continued)

Message ID Condition

MSGIDC3308I Duplicate record

MSGIDC3314I Out-of-sequence record, missing records, duplicate records, no record found

MSGIDC3351I VSAM I/O error RC156 or RC24 or RC32

MSGIDC3350I No record found (NORECF) or incorrect length

MSGIEC070I RC32 RC202 or RC104 RC203

MSGIEA000I Command reject (CMD REJ)

• ABEND0C4 in any of the following VSAM modules:

 IDA019RC IDA019RE IDA019RG IDA019RH
 IDA019RI IDA019RJ IDA019RN IDA019RW

• Loops:

– Loops issuing SVC121 (SVC X'79') or Start I/O (SIO)
– Loops in any of the following VSAM modules:

 IDA019RA IDA019RB IDA019RC IDA019RE
 IDA019RH IDA019RI IDA019RJ IDA019RN
 IDA019RW IDA019R2 IDA019R3 (IDAM19R3)

• Waits issued from IDA019RZ
• Waits with the TCB structure indicating a wait in IDAM19R3 (IDA019R3)
• RPL feedback word (RPLFDBWD) as shown:

 2D08009C 9208009C A608009C A708009C
 9108009C D808009C E008009C D708009C
 2A080020 2B080020 2C080020 DB080020
 DF080020

• RPL error code, (RPLERRCD) as shown:

 RC32 (Return Code x'20')
 RC156 (Return Code x'9C')

Recovering from index damage

1. Use the access method services REPRO command to copy the data component of the KSDS. Specify
the data component name (not the cluster name) in the REPRO INFILE parameter. See the chapter
describing functional command format in z/OS DFSMS Access Method Services Commands for details
about the REPRO command.

2. Use a sort utility to sort the copied file. This eliminates any duplicate keys that might exist in the file.
3. DELETE and re-DEFINE the damaged cluster.
4. REPRO from the sorted file to the newly defined cluster. Record management rebuilds the index

component.

Note:

a. This method does not work for a catalog or for a keyed cluster that contains spanned records.
b. Processing performed against the data set after initial index damage occurs will corrupt the data

set content. This method is an attempt to recover as much as possible of the data set. If a backup
copy of the data set exists, it may contain more desirable data set content than available by this
method.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 307

Damaged data control intervals

Another form of data set damage can occur to KSDS, ESDS, and RRDS data sets. A control interval (CI)
may become damaged. This kind of damage may cause several symptoms, including RC156 (X'9C'), and
I/O failures such as incorrect length or no record found.

Recovering from data CI damage

1. REPRO. the data component of the cluster. Specify the data component name (not the cluster name) in
the REPRO INFILE parameter.

2. This repro will fail; however, you will have copied all the available data that precedes the damaged
portion of the data set. The high-used RBA value in the catalog entry for the data set that you specify in
the REPRO OUTFILE parameter indicates how many bytes were successfully recovered before the
damage was encountered. To recover valid data following the damaged CI, add the CISIZE (from the
LISTCAT of the damaged data set) to the high-used RBA of the OUTFILE. Copy from the damaged data
set data component using the REPRO FROM parameter. Copy FROM the high-used RBA + CISIZE,
effectively skipping the damaged CI.

3. Continue this process, skipping damaged CIs until you have retrieved all valid data.

Note: The extent of the damage affects how much data you can successfully recover. If a backup copy
of the data set exists, it may contain more valid data than the data set that results from this recovery
method.

Physical I/O errors

The IBM Support Center may request a CCWTRACE of I/O activity to examine the I/O to the DASD device.
Do this by invoking GTF with the CCW, IO, IOSB, and SSCH options. Use the trace output to examine the
data sent to and received from the DASD device by the VSAM block processor. See z/OS MVS Diagnosis:
Tools and Service Aids for details about using CCWTRACE.

VSAM record management trace facility (non-RLS access)

Use the VSAM record management trace facility (R/M trace) to record VSAM record management control
blocks while VSAM is processing. GTF must also be active for the R/M trace function to write records to
the trace data set. See “Generalized trace facility” on page 291 for additional information on using GTF for
tracing in VSAM.

Use IPCS to print the GTF trace records. Because a trace work area for the data set being traced is
obtained in private low storage at the time the data set is opened, activating R/M trace may cause some
storage overload.

Note: The VSAM Record Management Trace is a tool. Overlaying or releasing VSAM's control blocks while
the trace is active may cause unpredictable results, such as, invalid trace information and various abends.

When to use the record management trace facility

Use the R/M trace to do these tasks:

• Capture data when a problem occurs.

Problems include incorrect data in a data set, missing records, incorrect control block information, and
program checks because of incorrect data and/or fields in VSAM R/M control blocks.

• Capture VSAM R/M control blocks before an error code is passed back to the caller.

VSAM R/M control blocks are captured before the calling program can:

– Erase or overwrite the VSAM data
– Abnormally terminate
– Close the data set, freeing VSAM R/M control blocks.

Starting the record management trace function

You must take the following steps to use trace:

VSAM diagnostic aids

308 z/OS: z/OS DFSMStvs Administration Guide

1. Activate GTF on your system. When you start GTF, specify USR or USRP with an AM01 event identifier,
which is X'FF5'. If neither USR or USRP is specified, GTF ignores the data passed to it by trace.

2. Place an AMP=('TRACE=(subparameters)') on the DD statement of the data set that you want to trace.

The AMP=('TRACE=(subparameters)') specifies to VSAM that you want to trace the control blocks
associated with the data set identified by the DD statement. For complete syntax information on the AMP
parameter, see the section on coding the DD statement in z/OS MVS JCL Reference.

The following are the valid subparameters for trace, including their brief descriptions.

• HOOK=(n,n,...) specifies where in the VSAM R/M code tracing is to occur. The default is HOOK=(1).
HOOK is an optional subparameter.

Table 64 on page 309 lists the predefined trace point IDs, their associated modules, and their functions.

Table 64. Predefined trace IDs, modules, and functions. Predefined trace IDs, modules, and functions

Trace point ID Module Description

0000 IDA019R1 Entry to VSAM.

0001 IDA019R1 Exit from VSAM.

0002 IDAM19R3 Prior to SVC 121 for writes of CIs (no reads).

0003 IDA019RZ After I/O, wait for CI reads and writes.

0004 IDA019SE Prior to call to EOV (SVC 55).

0005 IDA019SE After return from EOV.

0006 IDA019RE Start of a CI split.

0007 IDA019RE After completion of a CI split.

0008 IDA019R3 All I/O occurring during a CI split.

0009 IDA019RF Start of a CA split.

0010 IDA019RF After completion of a CA split.

0011 IDA019R3 All I/O occurring during a CA split.

0012 IDA019RJ Prior to index CI split (IDA019RJ entry).

0013 IDA019RI After call to IDA019RJ (index split).

0014 IDA019RU After completion of an upgrade request.

0015 IDA019RW,
IDA019SY

Shared resources—after I/O, no errors.

 IDA019RZ Non-shared resources—after I/O, no errors.

0016 IDA019RW,
IDA019SY

Shared resources—after I/O, error occurred.

 IDA019RZ Non-shared resources—after I/O, error occurred.

0017 IDA019RP After return from JRNAD exit.

0018 IDA019S7 Before SVC 109 call to update the VSI block.

0019 IDA019S7 Before control blocks are updated from VSI.

0020 IDA019R4 Before data record is compressed.

0021 IDA019R4 After data record is compressed.

0022 IDA019R4 Before data record is decompressed.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 309

Table 64. Predefined trace IDs, modules, and functions. Predefined trace IDs, modules, and functions
(continued)

Trace point ID Module Description

0023 IDA019R4 After data record is decompressed.

0024 IDAM19R3 Prior to SVC 121 for reads of CIS.

0025 through
0099

 Reserved.

0100 through
0255

 User trace points.

Note:

1. There is no limit to the number of trace points you can specify to trace.
2. The HOOK subparameter must be enclosed in parentheses, even if only one trace point ID is

specified (for example, HOOK=(1)).
• ECODE=ANY|codenumber Limits tracing. When used, tracing occurs only if an error code is being

returned to the caller. If ANY is specified, tracing is performed for any nonzero return code. If
codenumber (a specific error code) is provided, tracing occurs only if the RPLFDBK code matches that
error code.

ECODE is an optional subparameter. If ECODE is not used, the RPLFDBK code will not determine if
tracing is to occur.

When an error code (codenumber) is given, it must be a positive decimal number. For example,
ECODE=12 causes tracing when one of the following situations occurs:

– A buffer needs to be written
– An attempt was made to store a record out of ascending order sequence
– A physical read error occurred for an index component sequence set.

The three error situations are indicated by the RPLFDBK code of X'0C' and the content of register 15
which is 0, 8, or 12, respectively.

Note: If the user's LERAD or SYNAD exit routine resets the return code before VSAM returns to the
caller, this exit routine may fail. Its failure depends on which trace point is active, and when the call to
the user's exit routine is made. See z/OS DFSMS Installation Exits for more information on user exit
routines.

• KEY=keydata|lowRBA-highRBA Limits tracing. When used, tracing only occurs if the record key
matches keydata, or if the record's RBA value is within the range of the lowRBA and highRBA values.
Keydata is the EBCDIC representation of the whole key or the first few characters of a range of keys.
KEY is an optional subparameter.

If KEY=keydata is specified, the keydata may be any length up to 44 bytes. The keydata value does not
need to be the same length as the record's key length. The shorter key length is used to determine the
amount of bytes to be compared; this allows you to use generic key values and specify a range of keys.

If KEY=lowRBA-highRBA is specified, tracing occurs only if the RBA of the record being processed is
within the range of lowRBA and highRBA values.

PARM1, byte 5 bit 5 determines the value of the KEY. If this bit is 0, the KEY field contains a key value; if
this bit is 1, the KEY field contains an 8-byte lowRBA value, a dash, and an 8-byte highRBA value.

Note: The KEY subparameter must not contain quotes, commas, or parentheses.
• PARM1=trace options

PARM1 controls the tracing of any user-opened data sets.

VSAM diagnostic aids

310 z/OS: z/OS DFSMStvs Administration Guide

The PARM1 subparameter specifies which VSAM Record Management data areas are to be traced. It
controls the tracing of the user-opened data sets.

PARM1 is required. If TRACE is specified without any subparameters, only VSAM Open/Close/EOV GTF
records are built.

For an extended format data set, the CPA is not a valid control block to trace. If specified, the CPA will
be ignored.

For a compressed data set, the buffers might contain data in a compressed format.

The PARM1 value must be entered in hexadecimal. Each bit in the subparameter represents a trace
option. If the bit is active (1), the corresponding control block is traced or, in the case of bits in byte 5,
the corresponding condition is taken. The bits are as follows:

Table 65. PARM1 subparameter bits, byte 0. PARM1 subparameter bits, byte 0

Byte 0 Notes Description

1... 1 ABP–actual block processor.

.1.. 1 ACB–access method control block.

..1. AMB–access method block.

...1 1 AMBL–access method block list.

.... 1... AMBXN–access method block extension.

.... .1.. AMDSB–access method data set statistics block.

.... ..1. 1 ARDB–address range definition block.

.... ...1 1 BIB–base information block.

Table 66. PARM1 subparameter bits, byte 1. PARM1 subparameter bits, byte 1

Byte 1 Notes Description

1... 2 BSPH–buffer subpool header.

.1.. 2 BUFC–buffer control block.

..1. 1 CMB–cluster management block.

...1 7 CPA–channel program area.

.... 1... 1 CSL–core save list.

.... .1.. DIWA–data insert work area.

.... ..1. 1 EDB–extent definition block.

.... ...1 1 HEB–header element block.

Table 67. PARM1 subparameter bits, byte 2. PARM1 subparameter bits, byte 2

Byte 2 Notes Description

1... ICWA–index create work area.

.1.. IICB–ISAM interface control block.

..1. IMWA–index modification work area.

...1 IOMB–I/O management block.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 311

Table 67. PARM1 subparameter bits, byte 2. PARM1 subparameter bits, byte 2 (continued)

Byte 2 Notes Description

.... 1... 7 IOSB–I/O supervisor block.

.... .1.. IXSPL–index search parameter list.

.... ..1. 1 LPMB–logical-to-physical mapping block.

.... ...1 2 PLH–placeholder.

Table 68. PARM1 subparameter bits, byte 3. PARM1 subparameter bits, byte 3

Byte 3 Notes Description

1... RPL–request parameter list.

.1.. SRA–sphere record area.

..1. UPT–upgrade table.

...1 1 VAT–valid AMBL table.

.... 1... 1 VMT–volume mount table.

.... .1.. VSI–VSAM shared information block.

.... ..1. 1 VVT–VSRT vector table.

.... ...1 VSRT–VSAM shared resources table.

Table 69. PARM1 subparameter bits, byte 4. PARM1 subparameter bits, byte 4

Byte 4 Notes Description

1... WAX–work area for path processing.

.1.. WSHD–working storage header.

..1. 2 Buffers.

...1 User's search argument or key

.... 1... User's record.

... .1.. Caller's registers.

... ..1. 6 Compression blocks

... ...x Reserved.

Table 70. PARM1 subparameter bits, byte 5. PARM1 subparameter bits, byte 5

Byte 5 Notes Description

1... Do not trace data control blocks.

.1.. Do not trace index control blocks.

..1. 2 Trace all control blocks.

...1 1 Limit: one trace of control blocks.

.... 0... KEY=keydata (the KEY contains a key value).

VSAM diagnostic aids

312 z/OS: z/OS DFSMStvs Administration Guide

Table 70. PARM1 subparameter bits, byte 5. PARM1 subparameter bits, byte 5 (continued)

Byte 5 Notes Description

.... 1... KEY=lowRBA-highRBA (the KEY contains RBA values).

.... .1.. Trace AIX, PATH, or UPGRADE processing (PARM2 required).

.... ..1. 3 Validity-check control blocks; trace if bad.

.... ...x Reserved.

• PARM2=trace options

PARM2 controls the tracing of any VSAM-opened data sets.

The PARM2 subparameter is used to control the tracing of:

– An alternate index's base cluster when opened as a path
– A base cluster's UPG (upgrade) data set.

PARM2 is used only if PARM1, byte 5 bit 5 (X'04') is specified. It has the same options as PARM1's
except for the last byte (byte 5), which Table 71 on page 313 shows.

Table 71. PARM2 subparameter bits. PARM2 subparameter bits

Byte 5 Notes Description

xxxx Same usage as in PARM1.

.... xx.. Reserved.

.... ..1. 4 Trace all associated data sets.

.... ...1 5 Trace UPGRADE control blocks.

Notes:

1. When limit: one trace of control blocks (byte 5 bit 3) is specified, the control blocks indicated with
note 1 are traced only on the first call to R/M trace. These control blocks, generally, do not change
after the data set is opened.

2. When trace all control blocks (byte 5 bit 2) is specified, the control blocks indicated with note 2 are
traced even when the current request does not use them. If this bit is off, only those control blocks
directly associated with the active request are traced.

Attention: Turning this bit on can cause a large amount of GTF data, depending on the number of
strings and buffers and the size of buffers.

3. This option causes R/M trace to validity-check the pointers in the VSAM R/M control blocks, and if a
chaining error is detected, the trace is taken.

4. When byte 5 bit 6 of PARM2 is off, only the data set being processed when R/M trace was called is
traced. When this bit is on, R/M trace locates and traces data sets associated with the calling data
set.

– If the calling or associated data set was user-opened, PARM1 is used.
– If the calling or associated data set was VSAM-opened, PARM2 is used.
– When byte 5 bit 7 of PARM2 is off, UPGRADE data sets are not traced unless the UPGRADE was

the calling data set. When byte 5 bit 7 of PARM2 is on, R/M trace treats UPGRADES as associated
data sets; they are traced when the calling data set is a path, alternate index, or base.

– When byte 4 bit 6 of PARM1 is on, tracing of compression related control blocks will occur. This
includes control blocks CMSP, CMWA, and PCB. The data buffers for a compressed data set will
not be traced unless both the buffers and compression block bits are set on.

– Tracing of the CPA and IOSB is ignored for data sets defined as extended format or compressed.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 313

Example of a DD statement requesting trace

//KSDS01 DD DSN=VSAM.DATA.SET,DISP=SHR,
// AMP=('TRACE=(PARM1=F00203000010',
// 'HOOK=(1,5),KEY=C1C2C3C4F7F8,PARM2=F123456789AB)')

The TRACE= on this DD statement activates the R/M trace for VSAM.DATA.SET. The R/M trace records
are written out when the following conditions are met:

1. The record being processed has a key that begins with the character string ABCD78 as specified by
KEY=C1C2C3C4F7F8.

2. Record management returns to the caller (HOOK 1) or returns from a call to EOV (HOOK 5) as specified
by HOOK=(1,5).

When these conditions are met, R/M trace writes to GTF the following data as requested by PARM1: ABP,
ACB, AMB, AMBL, EDB, LPMB, and PLH The 10 in byte 5 of PARM1 requests the ABP, ACB, AMBL, EDB,
LPMB be traced only on the first call to R/M trace. PARM2 has no effect on tracing because PARM1, byte 5
bit 5 (trace AIX, PATH, or UPGRADE processing) was not specified.

Adding trace points

Several trace points are predefined into VSAM; each has a unique trace point ID.

If one of these predefined trace points (specifiable by HOOK) is insufficient, you can add your own trace
point by providing the code, as follows:

VER nnnn XXXX,XXXX ORIGINAL INSTRUCTION
VER nnn4 ????,???? MAIN NEXT SEQUENTIAL INSTRUCTION
VER pppp ZZZZ,ZZZZ PATCH LOCATION OF PATCH
REP nnnn 47F0,pppp BC 15,PATCH BRANCH TO THE PATCH
REP pppp BFFF,3078 ICM 15,15,AMBTRACE IS TRACE ACTIVE?
REP ppp4 4780,pp10 BZ EXIT NO, SKIP HOOK CODE
REP ppp8 58F0,F000 L 15,0(15) LOAD TRACE ADDRESS
REP pppC 05EF BALR 14,15 GO TO TRACE
REP pppE 0064 DC X'0064' ANY USER'S TRACE POINT ID
REP pp10 XXXX,XXXX EXIT ORIGINAL INSTRUCTION
REP pp14 47F0,nnn4 B MAIN RETURN TO NEXT SEQUENTIAL
 INSTRUCTION

You must ensure that the following registers contain the indicated data:

• Register 2 Address of the PLH
• Register 3 Address of the AMB (data or index)
• Register 15 Address of IDA019ST

Failure to have these registers set could cause program checks and other unpredictable results.
Register 0 is altered during the execution of trace routine. Care must be used in the selection of trace
points, and in the selection of control blocks to be traced, because not all control blocks may be valid at a
given time.

Ending the record management trace function

The tracing of a data set terminates when that data set is closed. If you want to terminate the tracing
before closing the data set, you must stop GTF. You can then restart GTF, but if you specify USR or USRP
with FF5, R/M tracing will resume.

Printing the record management trace output

VSAM trace records are formatted and printed with IPCS. “Printing GTF records” on page 293 gives some
examples of this service. For information on how to use IPCS, see z/OS MVS IPCS User's Guide. For
information on the command syntax, see z/OS MVS IPCS Commands.

VSAM record management return and reason codes
VSAM provides return codes and reason codes to indicate the results of macro calls.

VSAM diagnostic aids

314 z/OS: z/OS DFSMStvs Administration Guide

The return codes listed in this topic are also applicable when RLS is active.

Return codes from record-management (request) macros are set in register 15; reason codes are set in
the RPL RPLFDBWD.

VSAM control block manipulation macros set return codes in registers 15 and 0.

Return codes and reason codes from VSAM macros can also be found in “Understanding VSAM macro
return and reason codes” on page 167.

Return codes from the record-management (request) macros

After a request macro or a CHECK or ENDREQ macro is issued, register 15 contains a return code.

After an asynchronous request to access a data set, VSAM indicates in register 15 whether the request
was accepted, as Table 72 on page 315 shows.

Table 72. Return codes from the record-management (request) macros - asynchronous requests. Return codes from
the record-management (request) macros - asynchronous requests

Return code Description

0(X'00') Request was accepted.

4(X'04') Request was not accepted because the request parameter list indicated by the request
(RPL=address) was active for another request.

16(X'10') • SMSVSAM server is not active
• invalid OPEN connection

After a synchronous request, or a CHECK or ENDREQ macro, register 15 indicates whether the request
was completed successfully, as Table 73 on page 315 shows.

Table 73. Return codes from the record-management (request) macros - synchronous requests. Return codes from
the record-management (request) macros - synchronous requests

Return code Description

0(X'00') Request completed successfully.

4(X'04') Request was not accepted because the request parameter list indicated by the request
(RPL=address) was active for another request.

8(X'08') Logical error; specific error is indicated in the feedback field in the RPL.

12(X'0C') Physical error; specific error is indicated in the feedback field in the RPL.

16(X'10') • The SMSVSAM server is not active.
• The OPEN connection is invalid.
• DFSMStvs is not active.

The feedback area of the request parameter list (RPL) contains additional diagnostic information that is
used with the return codes in register 15 to determine the cause of an error.

The feedback area in the RPL is a fullword field:

• Byte0 Problem determination code
• Byte1 RPL return code (same as register 15)
• Byte2 Component code
• Byte3 Reason code

VSAM does not branch to an exit routine when register 15 is 0 on return from a request. The list in Table
74 on page 316 describes the reason codes that might be in the RPL feedback area when register 15 is 0.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 315

Table 74. Return codes from the record-management (request) macros - R15=0. Return codes from the record-
management (request) macros - R15=0

RPLRTNCD code Condition

0(X'00') Request completed successfully.

4(X'04') Request completed successfully. For retrieval, VSAM mounted another volume to locate the
record; for storage, VSAM allocated additional space or mounted another VSAM EOV was
called.

8(X'08') For GET requests, indicates that a duplicate key follows; for PUT requests, indicates that a
duplicate key was created in an alternate index with the nonunique attribute.

12(X'0C') (Shared resources only.) A buffer needs to be written.

16(X'10') Control area split was required because a sequence set control interval had free space
insufficient to contain the key to be inserted.

24(X'18') Buffer found but not modified: no buffer writes performed.

28(X'1C') A CI split for the CI was interrupted. The CI was read as non-update with address access.
This warning condition indicates that duplicate data records may exist. The RBA for this CI
can be acquired from RPLDDDD for non-extended-addressable data sets or from the lower
six bytes of RPLRBAR for an extended-addressable data set.

32(X'20') Possible causes:

• Request deferred for a resource held by the terminated RPL is asynchronous and cannot
be restarted by TERMRPL.

• A MRKBFR request is invalid because no candidate buffer could be found.
• For IDARETLK, there were no locks to retain since no update locks exist for this

SUBSYSNM/LUWID/SPHERE.

36(X'24') Possible data set error condition was detected by TERMRPL:

1. The request was abnormally terminated in the middle of its I/O operation.
2. One of the data/index BUFCs of the string contains data that needs to be written

(BUFCMW=ON), but it was invalidated by TERMRPL.

40(X'28') Error in PLH data BUFC pointer was detected by TERMRPL.

43(X'2B') EOV called to retrieve or update the dictionary token in the catalog for a compressed data
set.

44(X'2C') EOV called to update catalog statistics.

See the following discussions for the logical-error and physical-error return codes.

Function codes for logical and physical errors

When a logical or physical error occurs during processing that involves alternate indexes, VSAM provides
a code in the RPLCMPON field that indicates whether the base cluster, its alternate index, or its upgrade
set was being processed and whether upgrading was satisfactory or may have been incorrect because of
the error (see Table 75 on page 316).

Table 75. Function codes for logical and physical errors. Function codes for logical and physical errors

Code What was being
processed

Status of upgrading

0(X'00') Base cluster Satisfactory.

1(X'01') Base cluster Might be incorrect.

2(X'02') Alternate index Satisfactory.

3(X'03') Alternate index Might be incorrect.

VSAM diagnostic aids

316 z/OS: z/OS DFSMStvs Administration Guide

Table 75. Function codes for logical and physical errors. Function codes for logical and physical errors (continued)

Code What was being
processed

Status of upgrading

4(X'04') Upgrade set Satisfactory.

5(X'05') Upgrade set Might be incorrect.

Logical-error return codes

When a logical-error-analysis exit routine (LERAD) is provided, it gets control for logical errors, and
register 15 does not contain 8, but contains the entry address of the LERAD routine.

Table 76 on page 317 gives the contents of the registers when VSAM exits to the LERAD routine.

Table 76. Contents of registers when a LERAD routine gets control. Contents of registers when a LERAD routine gets
control

Register Contents

0 Unpredictable.

1 Address of the request parameter list that contains the feedback field the routine should examine.
The register must contain this address if the exit routine returns to VSAM.

2-13 Same as when the request macro was issued. Register 13, by convention, contains the address of
the processing program's 72-byte save area, which must not be used as a save area by the LERAD
routine if the routine returns control to VSAM.

14 Return address to VSAM.

15 Entry address to the LERAD routine. The register does not contain the logical-error indicator.

If a logical error occurs and a LERAD exit routine is not provided (or the LERAD exit is inactive), VSAM
returns control to the processing program following the last executed instruction. Register 15 indicates a
logical error (8), and the feedback field in the request parameter list contains a code identifying the error.
Register 1 points to the request parameter list.

See z/OS DFSMS Installation Exits for additional information on the LERAD exit routine.

Table 77 on page 317 gives the logical-error return codes in the feedback field and explains what each
means.

Table 77. Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active..
Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active.

RPLERRCD
code

Symbol Condition

4(X'04') RPLEODER End of data set encountered (during sequential retrieval). Either no EODAD
routine is provided, or one is provided and it returned to VSAM and the
processing program issued another GET.

8(X'08') RPLDUP Attempt was made to store a record with a duplicate key.

12(X'0C') RPLSEQCK Attempt was made to store a record out of ascending key sequence; record
may also have a duplicate key.

16(X'10') RPLNOREC Record not found.

20(X'14') RPLEXCL • For MACRF=RLS, this code means that there was an intra-LUDWID
exclusive control conflict.

• For non-RLS, the record is already held in exclusive control by another
requester.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 317

Table 77. Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active..
Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active. (continued)

RPLERRCD
code

Symbol Condition

21(X'15') For MACRF=RLS, the request was rejected due to deadlock; the deadlock
was resolved by rejecting this request.

22(X'16') For MACRF=RLS, the request was rejected due to timeout. The request was
presumed to be an inter resource manager deadlock.

24(X'18') RPLNOMNT • For MACRF=RLS, lock request rejected because the lock is held by a failed
sybsystem.

• For non RLS, the record resides on a volume that cannot be mounted.

28(X'1C') RPLNOEXT Data set cannot be extended because VSAM cannot allocate additional
direct-access storage space. Either there is not enough space left in the data
space for the secondary-allocation request or an attempt was made to
increase the size of a data set by splitting the control area (high used RBA
change) during processing with SHROPT=4 and DISP=SHR.

32(X'20') RPLINRBA An RBA was specified that does not give the address of any data
record in the data set.
This error will be returned by register 10 and register 8
if the RBA provided addresses a relative CI greater than 4GB.

36(X'24') RPLNOKR Key ranges were specified for the data set when it was defined, but no range
was specified that includes the record to be inserted.

40(X'28') RPLNOVRT Insufficient virtual storage in the address space to complete the request. Or
there is insufficient storage available to add another string dynamically. For
DFSMStvs, this indicates that DFSMStvs was unable to expand the pool for
its context or unit of recovery-related control blocks.

44(X'2C') RPLINBUF Work area not large enough for the data record (GET with OPTCD=MVE).

48(X'30') RPLINTRM Invalid options, data set attributes, or processing conditions specified for
TERMRPL request:

• CNV processing
• The specified RPL is asynchronous
• Chained RPLs
• PATH processing
• Shared resources (LSR/GSR)
• Create mode
• RRDS
• Data set contains spanned records
• User not in Key 0 and supervisor state
• EOV in process (secondary allocation).

52(X'34') RPLPTERM The previous request was TERMRPL.

VSAM diagnostic aids

318 z/OS: z/OS DFSMStvs Administration Guide

Table 77. Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active..
Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active. (continued)

RPLERRCD
code

Symbol Condition

56(X'38') RPLCTERR • For MACRF=RLS, RPL reuse violation. The RPL request contained
positioning information from a previous request and the ACB or LUDWID
specified in the RPL did not match the previous ACB or LUDWID.

• For non RLS, error from catalog update at the beginning of a CI/CA split for
a backup while opening a data set.

60(X'3C') RPLCTERR Available for RLS and DFSMStvs use.

64(X'40') RPLNOPLH • For RLS and DFSMStvs, the limit of 1024 outstanding requests for this ACB
has been exceeded.

• As many requests are active as the number specified in the STRNO
parameter of the ACB macro; therefore, another request cannot be
activated.

• Or there is insufficient storage available to add another string dynamically.

68(X'44') RPLINACC Attempt was made to use a type of processing (output or control-interval
processing) that was not specified when the data set was opened.

72(X'48') RPLINKEY • For RLS and DFSMStvs, add GETIX or PUTIX to any data set organization.
• For non-RLS or DFSMStvs, one of the following items might apply:

– Keyed GET request for an ESDS
– GETIX or PUTIX to ESDS
– Fixed length RRDS

76(X'4C') RPLINADR • An ADR or CI PUT was issued to add a record to a KSDS or VRRDS
• Or a CI PUT was issued to a fixed length RRDS.

80(X'50') RPLERSER An ERASE request was issued for access to an ESDS or CI.

84(X'54') RPLINLOC • OPTCD=LOC was specified for a PUT request or in the previous request
parameter list, in a chain of parameter lists.

• LOC not supported (RLS only)

88(X'58') RPLNOPTR A sequential GET or PUT request was issued without VSAM having been
positioned for it, or a change was made from addressed access to keyed
access without VSAM having been positioned for keyed sequential retrieval,
or an illegal switch between forward and backward processing was
attempted.

92(X'5C') RPLINUPD A PUT, ERASE, or IDALKCD was issued without a previous GET for UPDATE.
Or a PUTIX was issued without a previous GETIX.

96(X'60') RPLKEYCH • For RLS and DFSMStvs, a PUT NUP attempt was made to change the key
specified by a previous IDALKADD request.

• For non-RLS or DFSMStvs, an attempt was made to change the prime key
or the reference key during an update.

100(X'64') RPLDLCER Attempt was made to change the length of a record during an addressed
update.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 319

Table 77. Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active..
Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active. (continued)

RPLERRCD
code

Symbol Condition

104(X'68') RPLINVP The RPL options are either invalid or conflicting in one of the following ways:

• SKP was specified and either KEY was not specified or BWD was specified.

XRBA was not specified in the RPL OPTCD when a GET DIR or POINT
REQUEST was issued in ADR|CNV mode with LRD=OFF and PLARG points
to a non-zero argument (RBA), during the processing of an EA data set.

• BWD was specified for CNV processing.
• FWD and LRD were specified.
• Neither ADR, CNV, nor KEY was specified in the RPL.
• BFRNO is invalid (less than 1 or greater than the number of buffers in the

pool).
• WRTBFR, MRKBFR, or SCHBFR was issued, but either TRANSID was

greater than 31 or a shared-resources option was not specified.
• ICI processing was specified, but a request other than a GET or a PUT was

issued. CNV processing for a compressed data set was specified. Only
VERIFY and VERIFY REFRESH are allowed.

For RLS and DFSMStvs only,

• IDARECOV, IDALKREL, IDAINQRC, IDARETLK, or IDAQUIES issued and
ACB is not an RLS Control ACB.

• A Record Management GET or PUT was issued against an RLS Control
ACB.

• No LUWID specified for IDALKREL, IDARETLK, or IDALKCD.
• SUBSYSNM was specified in ACB at OPEN, but GET, IDALKADD, PUT,

POINT, or ERASE specified LUWID=0.
• RLS options (LUWID, read integrity options, cold start) are not supported

for NSR/GSR/LSR access.
• CNV access specified for RLS access or an extended function data set.
• ADR access to KSDS for RLS.
• Invalid record management request issued against a control ACB.
• Non-commit protocol application specified:

– CRE on POINT or GET NUP
– KL on GET UPD to a recoverable sphere

• Invalid RLS request: LSR or MSS request macros, GETIX, or PUTIX.
• IDAEADD is invalid for KSDS, RRDS, or VRRDS.

108(X'6C') RPLINLEN RECLEN specified was larger than the maximum allowed, equal to 0, smaller
than the sum of the length and the displacement of the key field, or not
equal to record (slot) length specified for a relative record data set.

112(X'70') RPLKEYLC KEYLEN specified was too large or equal to 0.

VSAM diagnostic aids

320 z/OS: z/OS DFSMStvs Administration Guide

Table 77. Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active..
Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active. (continued)

RPLERRCD
code

Symbol Condition

116(X'74') RPLINLRQ • Available for RLS and DFSMStvs.
• For non RLS, invalid request during load mode. A GET, POINT, ERASE,

direct PUT, skip sequential PUT, or PUT with OPTCD=UPD not permitted
during initial data set loading (that is, for storing records in the data set the
first time it is opened).

120(X'78') RPLINTCB • Current job step TCB is not correct one.
• For RLS, request issued in cross-memory mode.

124(X'7C') RPLUEXCL • Available for RLS and DFSMStvs.
• For an application that does not use RLS or DFSMStvs, a request was

canceled from a user JRNAD exit.

128(X'80') RPLIXHHP Index is invalid, request cannot be completed.

132(X'84') RPLSRLOC • Available for RLS and DFSMStvs.
• For an application that does not use RLS or DFSMStvs, an attempt was

made in locate mode to retrieve a spanned record.

136(X'88') RPLARSRK • Available for RLS and DFSMStvs.
• For an application that does not use RLS or DFSMStvs, an addressed GET

was issued for a spanned record in a key-sequenced data set.

140(X'8C') RPLSRISG Inconsistent spanned-record segments.

144(X'90') RPLNBRCD Invalid pointer in an alternate index (no associated base record).

148(X'94') RPLNXPTR The maximum number of pointers in the alternate index has been exceeded.

152(X'98') RPLNOBFR • For LSR, RLS, and DFSMStvs, not enough buffers are available to process
the request.

• For RLS and DFSMStvs, the dataspace buffer pool was exhausted.

156(X'9C') RPLINCNV An invalid control interval was detected during keyed processing. The
possible invalid conditions are:

1. A key is not greater than the previous key.
2. A key is not in the current control interval.
3. A spanned record RDF is encountered.
4. A freespace pointer is invalid.
5. The number of records does not match a group RDF record count.

160(X'A0') RPLBMWER A request was issued to invalidate a modified buffer. For RLS, the required
quiesce exit does not exist.

161(X'A1') RPLQCLRJ QUICLOSE request is rejected because the sphere is already marked
quiesced.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 321

Table 77. Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active..
Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active. (continued)

RPLERRCD
code

Symbol Condition

162(X'A2') RPLQUIRJ The quiesce status of the sphere means this IDAQUIES request cannot be
accepted from this application. Issued for the following:

• This is a QUICMP request and field QUIERTOK in the IFGQUIES parameter
area does not contain a request token corresponding to a QUIESCE exit
invocation that VSAM is waiting for, to get a QUICMP response from this
application.

• This QUICEND or QUIBEND request is rejected because the application
signalled completion of its processing for this QUICOPY or QUIBWO event.

• This QUICEND or QUIBEND request is rejected because the applications'
QUIESCE exit was not driven for this QUICOPY or QUIBWO event.

163(X'A3') RPLQACBO IDAQUIES type QUICMP request rejected. ACBs for the sphere remain open
for the application and this is an IDAQUIES type QUICLOSE.

164(X'A4') RPLQCNCL IDAQUIES request did not complete successfully. The request is canceled.

165(X'A5') For RLS and DFSMStvs, either the IDARECOV request was specified as
TYPE=LL and the sphere was not in lost locks state for this subsystem, or
TYPE=NONRLS was specified and the sphere was not in NONRLSUPDATE
permitted state.

166(X'A6') Available for RLS and DFSMStvs.

167(X'A7') RPLQNSUP The field QUIESTYP in the IFGQUIES parameter area specifies an invalid
request type, or the eyecatcher in IGFQUIES is invalid.

168(X'A8') For RLS and DFSMStvs, the RPLAREA was 0.

169(X'A9') RPLQCTGF For RLS and DFSMStvs, the IDAQUIES, IDARETLK TYPE=SS, IDARECOV
TYPE=LL, or IDARECOV TYPE=NONRLS request failed because the Catalog
Locate command issued for the specified sphere or component name failed.

170(X'AA') RPLQUNFL The QUIOPEN, QUICEND, or QUIBEND request is rejected because the
requested unquiesce operation is already started for this sphere.

172(X'AC') RPLACQER For RLS and DFSMStvs, the IDAQUIES, IDARETLK TYPE=SS, IDARECOV
TYPE=LL, or IDARECOV TYPE=NONRLS request failed because the specified
sphere is not an SMS VSAM data set.

176(X'B0') RPLSTGER For RLS and DFSMStvs, the ACB specified in the IDARETLK TYPE=SS,
IDARECOV TYPE=LL, or IDARECOV TYPE=NONRLS request is not a valid
ACB open for RLS or DFSMStvs processing to the sphere.

180(X'B4') For RLS, an invalid request for a nonrecoverable data set.

181(X'B5') RPLQRACF This IDAQUIES request is rejected because the requestor does not have
update authority for the sphere:

• This is a type QUICLOSE request. Successful completion of the request
results in a catalog update to mark the sphere quiesced. Because the
requestor does not have update authority, the request is rejected.

• The catalog shows that this sphere is quiesced. Successful completion of
the QUIOPEN request would result in a catalog update to reset the
quiesced state of the sphere. Because the requestor does not have update
authority, the request is rejected.

VSAM diagnostic aids

322 z/OS: z/OS DFSMStvs Administration Guide

Table 77. Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active..
Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active. (continued)

RPLERRCD
code

Symbol Condition

182(X'B6') RPLQINPR For RLS, the IDAQUIES request rejected because an IDAQUIES is already in
progress for this sphere. If an RPL message area (address in RPLERMSA) of
sufficient length (specified in RPLEMLEN) is specified, the following
information is returned:

 Offset Length Description
 ------ ------ -----------
 0 1 Type of quiesce event already in progress for
 this sphere. Quiesce type constants are defined
 in IFGQUIES macro.

183(X'B7') RPLMIGRA IDAQUIES request rejected because data set is migrated.

184(X'B8') RPLABEND For RLS, an ABEND condition occurred while processing this VSAM request.
The VSAM RLS FRR (Functional Recovery Routine) intercepted the failure
and failed the VSAM request with this reason code.

185(X'B9') For RLS, the user task was canceled while the request was being processed.

186(X'BA') RPLEOVER For RLS, end-of-volume initialization failed when DATASET tried to extend.

187(X'BB') For RLS, an error occurred with partial EOV processing.

188(X'BC') RPLNO241 For RLS, the storage in subpool 241 is not available.

189(X'BD') For RLS, a lock for the VSAM request required space in the record table,
which is full. You must modify the CFRM policy and rebuild the lock
structure.

192(X'C0') RPLIRRNO Invalid relative record number.

196(X'C4') RPLRRADR An addressed request was issued to a relative record data set.

200(X'C8') RPLPAACI Addressed or control-interval access was attempted through a path.

201(X'C9') For RLS or DFSMStvs, the IDARETLK TYPE=SS request failed because the
specified data set does not exist.

204(X'CC') RPLPUTBK PUT-insert requests (or for RLS, IDALKADD requests) are not allowed in
backward mode.

205(X'CD') • DFSMStvs was unable to complete the request because DFSMStvs
restarted while the unit of recovery was inflight. To continue processing,
the application must issue a commit or a backout, then begin a new unit of
recovery.

• For LSR, invalid CONTOKEN.

206(X'CE') • For DFSMStvs, indicates that the request was rejected because the data
set is quiesced or quiescing for copy. Retry the request.

• For applicaitons that do not use RLS or DFSMStvs, this is a validity check
error for share 3,4.

207(X'CF') For DFSMStvs, indicates that transactional processing is currently
unavailable because DFSMStvs is disabling or quiescing. Close all data sets
so the process can complete.

208(X'D0') RPLINVEQ Invalid ENDREQ request.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 323

Table 77. Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active..
Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active. (continued)

RPLERRCD
code

Symbol Condition

209(X'D1') • For DFSMStvs, indicates that the forward recovery log is unavailable
because it is disabling.

• For LSR, indicates a cache structure failure.

210(X'D2') • For DFSMStvs, indicates that forward recovery logging failed because the
record length is greater than the installation maximum supported by the
log.

• For shared resources, the buffer is being invalidated, or the buffer use
chain changing.

211(X'D3') • For DFSMStvs, indicates that a permanent I/O error was detected in the
forward recovery log. For appropriate action, see the accompanying
DFSMStvs logger messages.

• For LSR, indicates that the cache request was purged.

212(X'D4') RPLNOSPL Unable to split index during a CA split.

213(X'D5') • For DFSMStvs, indicates that the undo log is unavailable for processing.
• For LSR, indicatesw no connectivity to the cache structure.

214(X'D6') For DFSMStvs, indicates that a permanent I/O error was detected in the
undo log. For appropriate actions, see the accompanying DFSMStvs logger
messages.

216(X'D8') For RLS, the LUWID specified in the RPL does not exist for the subsystem
name specified in the ACB.

217(X'D9') DFSMStvs is unable to complete the request because RRS, which had been
available, went down and restarted. To continue processing, the application
must issue a commit or a backout and then begin a new unit of recovery.

218(X'DA') Unrecognizable return code from SVC 109.

220(X'DC') For DFSMStvs, this reason code is no longer being used.

224(X'E0') RPLMOIB A MRKBFR request was issued for an invalid buffer.

228(X'E4') RPLINVMD A cross-memory caller is not in supervisor state, in SRB, or in cross-memory
mode, or callers of RPL do not specify SYN processing.

229(X'E5') RPLDELCH The record length changed during decompression processing.

232(X'E8') RPLUPERR A cross-memory mode caller did not post the ECB in the UPAD exit routine.

235(X'EB') RPLBMWER • If the SMSVSAM server is not available, the IDAQUIES request fails with
R15=16.

• For RLS and DFSMStvs, this is an internal error.

236(X'EC') RPLINVSI Validity check error from SVC 109 for share option 3 or 4.

240(X'F0') RPLUSTAT Buffer pool status is unknown. The buffer use chain may be changing or a
buffer is being modified or invalidated. Reissue the request.

244(X'F4') RPLSVR14 Register 14 stack size is not large enough.

VSAM diagnostic aids

324 z/OS: z/OS DFSMStvs Administration Guide

Table 77. Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active..
Logical-error reason codes found in the RPL feedback field when R15=8 and LERAD is not active. (continued)

RPLERRCD
code

Symbol Condition

245(X'F5') RPLCMSCE Severe error returned from CMS for a compress call.

246(X'F6') RPLCMSDE Severe error returned from CMS for a decompress call.

247(X'F7') Error in the last active record number (DFM).

248(X'F8') RPLRST14 Register 14 return offset is negative.

249(X'F9') • For DFSMStvs, indicates that undo logging failed because the record
length is greater than the installation maximum supported by the log.

• For LSR XI, indicates an invalid vector token.

250(X'FA') RPLINVDT No valid directory token exists. The data set cannot be decompressed.

251(X'FB') RPLBMWER Internal VSAM error.

252(X'FC') RPLER252 Record-mode access is not valid for a linear data set.

253(X'FD') RPLER253 Verify function is not valid for a linear data set.

254(X'FE') RPLERQUS I/O activity on the data set was not quiesced before WTBFR TYPE=DS was
issued.

Table 78. Reason codes associated with R15=12. Reason codes associated with R15=12

RPLRTNCD code Condition

4(X'04') Read error for data component.

8(X'08') Read error for index component.

12(X'0C') Read error for sequence set.

16(X'10') Write error for data component.

24(X'18') Write error for sequence set.

28(X'1C') Available.

32(X'20') Available.

36(X'24') For RLS, coupling facility cache connectivity loss.

40(X'28') For RLS, coupling facility cache structure failure.

44(X'2C') For extended function data sets, the suffix for a physical record in the CI, at the RBA
specified in the RPL, is invalid.

Table 79. Reason codes associated with R15=16. Reason codes associated with R15=16

RPLRTNCD code Condition

12(X'0C') DFSMStvs processing is currently unavailable because DFSMStvs is initializing.

Physical-error return codes

When a physical-error-analysis exit routine (SYNAD) is provided, it gets control for physical errors, and
register 15 does not contain 12, but contains the entry address of the SYNAD routine.

For additional information on the SYNAD exit routine, see z/OS DFSMS Installation Exits.

Table 80 on page 326 gives the contents of the registers when VSAM exits to the SYNAD routine.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 325

Table 80. Contents of registers when a SYNAD routine gets control. Contents of registers when a SYNAD routine gets
control

Register Contents

0 Unpredictable.

1 Address of the request parameter list that contains a feedback return code and the address of a
message area, if any. If a request macro was issued, the RPL is the one pointed to by the request
macro; if a CLOSE macro was issued, the RPL was built by VSAM to process the close request.
Register 1 must contain this address if the exit routine returns to VSAM.

2-13 Same as when the request macro or CLOSE macro was issued. Register 13, by convention,
contains the address of the processing program's 72-byte save area, which may not be used by
the SYNAD routine if it returns control to VSAM.

14 Return address to VSAM.

15 Entry address to the SYNAD routine. The register does not contain the physical-error indicator.

Note: The SYNAD exit, like other user exits, might not return control to VSAM.

If a physical error occurs and a SYNAD exit routine is not provided (or the SYNAD exit is inactive), VSAM
returns control to the processing program following the last executable instruction. Register 15 indicates
a physical error (12), and the feedback field in the request parameter list contains a code identifying the
error. Register 1 points to the request parameter list.

Table 81 on page 326 gives the physical-error return codes in the feedback field and explains what each
indicates. If the user provided a message area, it contains a physical-error message with more details
about the error.

Table 81. Physical-error reason codes in the RPL feedback field from a request macro. Physical-error reason codes in
the RPL feedback field from a request macro

RPLERRCD code Symbol Condition

4(X'04') RPLRDERD Read error occurred for a data component.

8(X'08') RPLRDERI Read error occurred for the index set of an index component.

12(X'0C') RPLRDERS Read error occurred for the sequence set of an index component.

16(X'10') RPLWTERD Write error occurred for a data component.

20(X'14') RPLWTERI Write error occurred for the index set of an index component.

24(X'18') RPLWTERS Write error occurred for the sequence set of an index component.

 All physical errors are detected by IDA019R5 from I/O Management
abnormal-end appendage, IDA121A4.

Table 82 on page 326 gives the format of a physical-error message. The format and some of the contents
of the message are purposely similar to the format and contents of the SYNADAF message, which is
described in z/OS DFSMS Macro Instructions for Data Sets.

Table 82. Format of physical-error messages. Format of physical-error messages

Field Bytes Length Discussion

Message Length 0-1 2 Binary value of 128

 2-3 2 Unused (0)

Message Length-4 4-5 2 Binary value of 124 (provided for compatibility with SYNADAF
message)

 6-7 2 Unused (0)

Address of I/O
Buffer

8-11 4 The I/O buffer associated with the data in relation to which
the error occurred

VSAM diagnostic aids

326 z/OS: z/OS DFSMStvs Administration Guide

Table 82. Format of physical-error messages. Format of physical-error messages (continued)

Field Bytes Length Discussion

The rest of the message is in printable format:

Date 12-16 5 YYDDD (year and day)

 17 1 Comma (,)

Time 18-25 8 HHMMSSTH (hour, minute, second, and tenths and
hundredths of a second).

 26 1 Comma (,)

RBA 27-38 12 Relative byte address of the record in relation to which the
error occurred.

 39 1 Comma (,)

Data-Set Type 40 1 'D' for data or 'I' index

 41 1 Comma (,)

Volume Serial
Number

42-47 6 Volume serial number of the volume in relation to which the
error occurred.

 48 1 Comma (,)

Job Name 49-56 8 Name of the job in which error occurred.

 57 1 Comma (,)

Step Name 58-65 8 Name of the job step in which error occurred.

 66 1 Comma (,)

Unit 67-70 4 Device number on which the error occurred.

 71 1 Comma (,)

Device Type 72-73 2 The type of device in relation to which the error occurred
(always DA for direct access).

 74 1 Comma (,)

ddname 75-82 8 The ddname of the DD statement defining the data set in
relation to which the error occurred.

 83 1 Comma (,)

Channel
Command

84-89 6 The channel command that occasioned the error in the first
two bytes, followed by '-OP'

 90 1 Comma (,)

Message
condition codes:

91-105 15 Messages are divided according to ECB

X'41'—'INCORR LENGTH'

'UNIT EXCEPTION'
'PROGRAM CHECK'
'PROTECTION CHK'
'CHAN DATA CHK'
 'CHAN CTRL CHK'
 'INTFCE CTRL CHK'
 'CHAINING CHK'
 'UNIT CHECK'
 'SEEK CHECK'

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 327

Table 82. Format of physical-error messages. Format of physical-error messages (continued)

Field Bytes Length Discussion

If the type of the unit check can be determined, this
message is replaced by one of the following:

 'CMD REJECT'
'INT REQ'
 'BUS OUT CK'
'EQP CHECK'
 'DATA CHECK'
'OVER RUN'
'TRACK COND CK'
'SEEK CHECK'
'COUNT DATA CHK'
'TRACK FORMAT'
'CYLINDER END'
 'INVALID SEQ'
'INVALID SUFFFIX'
'NO RECORD FOUND'
'FILE PROTECT'
'MISSING A.M.'
'OVERFL INCP'

X'48'—'PURGED REQUEST'

X'4A'—'I/O PREVENTED'

X'4F'—'R.HA.RO. ERROR'

For any other ECB completion code—'UNKNOWN COND'

 106 1 Comma (,)

Physical Direct-
Access Address

107-120 14 BBCCHHR (bin, cylinder, head and record)

 121 1 Comma (,)

Access Method 122-127 6 'VSAM'

Control block manipulation return codes

When the control block manipulation routine returns to the caller after successful completion, register 15
contains 0. If the request is GENCB, register 0 contains the total length of the area that contains the
control block(s). Register 1 contains the address of the area.

When the control block manipulation routine returns to the caller with a nonzero value in register 15, an
error occurred. If the request is TESTCB and the caller supplied an ERET keyword, return is to the location
specified by the ERET keyword. Otherwise, the control block manipulation routine returns control to the
point of invocation, via the return address in register 14.

Register 15 contains a return code, which Table 83 on page 328 explains.

Table 83. Control block manipulation return codes. Control block manipulation return codes

Reg 15 Condition

0(X'00') Successful completion.

4(X'04') An error has been detected. The error code in register 0 indicates the type of error.

8(X'08') Invalid use of the execute form of this macro. Since the return code is set by the macro
expansion and not by the control block manipulation routine, the register 0 contents do not
indicate an error code.

VSAM diagnostic aids

328 z/OS: z/OS DFSMStvs Administration Guide

Register 0 contains an error code, which Table 84 on page 329 explains.

Table 84. Control block manipulation error codes. Control block manipulation error codes

Code

Applicable
macros“1” on page
330 Condition

1(X'01') G,M,S,T The function type is invalid.

2(X'02') G,M,S,T The control-block type is invalid.

3(X'03') G,M,S,T The keyword type is invalid.

4(X'04') M,S,T The control block to be processed is not of the type specified.

5(X'05') S,T The ACB to be processed is closed—it must be open.

6(X'06') S,T The cluster whose index component was to be processed is
not key-sequenced (does not include an index).

7(X'07') M,S The EXLST entry to be processed is not present.

8(X'08') G Not enough virtual storage is available, or (with AM=VTAM
specified) list and execute forms are inconsistent.

9(X'09') G,S User area is too small.

10(X'0A') G,M Exit address is not specified in the input.

11(X'0B') M The RPL to be processed is active, or it is already being
processed.

12(X'0C') M The ACB to be processed is open—it must be closed.

13(X'0D') M No exit address is specified in the input for the exit to be
activated.

14(X'0E') G,M,T An invalid combination of option codes (for example, for
MACRF or OPTCD) is specified.

15(X'0F') G,S The user area is not on a fullword boundary.

16(X'10') G,M,S,T A VTAM keyword is specified with AM=VTAM not specified.

19(X'13') M,S,T A specified keyword refers to a field beyond the end of the
control block to be processed.

20(X'14') S A specified keyword requires processing with shared
resources to be specified, but it is not.

21(X'15') S,T The block to be displayed or tested does not exist, because
the data set is a dummy data set.

22(X'16') S AM=VTAM is specified with SHOWCB for RPL fields=NIB, but
the RPLNIB is off, or SHOWCB RPL fields=Arg (CID) but the
RPLNIB bit is on.

23(X'17') G The value specified in the length parameter exceeds the
65535 byte limit.

All errors in control block manipulation are detected by
IDA019C1.

VSAM diagnostic aids

Chapter 6. Diagnosing DFSMStvs problems 329

Table 84. Control block manipulation error codes. Control block manipulation error codes (continued)

Code

Applicable
macros“1” on page
330 Condition

26(X'1A') S A request was made using a field name which allows the
returned data to have a one word length, but the value being
returned requires two words. A value of X'FFFFFFFF' is
returned in place of the true value.

Register 15 will contain a value of zero.

Note:

1. G=GENCB, M=MODCB, S=SHOWCB, T=TESTCB

VSAM diagnostic aids

330 z/OS: z/OS DFSMStvs Administration Guide

Appendix A. Accessibility

Accessible publications for this product are offered through IBM Knowledge Center (www.ibm.com/
support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a detailed message to the
Contact the z/OS team web page (www.ibm.com/systems/campaignmail/z/zos/contact_z) or use the
following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted mobility or limited
vision use software products successfully. The accessibility features in z/OS can help users do the
following tasks:

• Run assistive technology such as screen readers and screen magnifier software.
• Operate specific or equivalent features by using the keyboard.
• Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user interfaces found in z/OS.
Consult the product information for the specific assistive technology product that is used to access z/OS
interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following information describes how to use
TSO/E and ISPF, including the use of keyboard shortcuts and function keys (PF keys). Each guide includes
the default settings for the PF keys.

• z/OS TSO/E Primer
• z/OS TSO/E User's Guide
• z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM Knowledge Center with
a screen reader. In dotted decimal format, each syntax element is written on a separate line. If two or
more syntax elements are always present together (or always absent together), they can appear on the
same line because they are considered a single compound syntax element.

© Copyright IBM Corp. 2003, 2020 331

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/campaignmail/z/zos/contact_z

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To hear these numbers
correctly, make sure that the screen reader is set to read out punctuation. All the syntax elements that
have the same dotted decimal number (for example, all the syntax elements that have the number 3.1)
are mutually exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your syntax
can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a syntax element with
dotted decimal number 3 is followed by a series of syntax elements with dotted decimal number 3.1, all
the syntax elements numbered 3.1 are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add information about the
syntax elements. Occasionally, these words and symbols might occur at the beginning of the element
itself. For ease of identification, if the word or symbol is a part of the syntax element, it is preceded by the
backslash (\) character. The * symbol is placed next to a dotted decimal number to indicate that the
syntax element repeats. For example, syntax element *FILE with dotted decimal number 3 is given the
format 3 * FILE. Format 3* FILE indicates that syntax element FILE repeats. Format 3* * FILE
indicates that syntax element * FILE repeats.

Characters such as commas, which are used to separate a string of syntax elements, are shown in the
syntax just before the items they separate. These characters can appear on the same line as each item, or
on a separate line with the same dotted decimal number as the relevant items. The line can also show
another symbol to provide information about the syntax elements. For example, the lines 5.1*, 5.1
LASTRUN, and 5.1 DELETE mean that if you use more than one of the LASTRUN and DELETE syntax
elements, the elements must be separated by a comma. If no separator is given, assume that you use a
blank to separate each syntax element.

If a syntax element is preceded by the % symbol, it indicates a reference that is defined elsewhere. The
string that follows the % symbol is the name of a syntax fragment rather than a literal. For example, the
line 2.1 %OP1 means that you must refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.
? indicates an optional syntax element

The question mark (?) symbol indicates an optional syntax element. A dotted decimal number
followed by the question mark symbol (?) indicates that all the syntax elements with a corresponding
dotted decimal number, and any subordinate syntax elements, are optional. If there is only one
syntax element with a dotted decimal number, the ? symbol is displayed on the same line as the
syntax element, (for example 5? NOTIFY). If there is more than one syntax element with a dotted
decimal number, the ? symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the
syntax elements NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted decimal number
followed by the ! symbol and a syntax element indicate that the syntax element is the default option
for all syntax elements that share the same dotted decimal number. Only one of the syntax elements
that share the dotted decimal number can specify the ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option for the
FILE keyword. In the example, if you include the FILE keyword, but do not specify an option, the
default option KEEP is applied. A default option also applies to the next higher dotted decimal
number. In this example, if the FILE keyword is omitted, the default FILE(KEEP) is used. However,
if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option
KEEP applies only to the next higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be repeated zero or more times.
A dotted decimal number followed by the * symbol indicates that this syntax element can be used
zero or more times; that is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data area, or no data area.

332 z/OS: z/OS DFSMStvs Administration Guide

If you hear the lines 3* , 3 HOST, 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one item with that dotted
decimal number, you can repeat that same item more than once.

2. If a dotted decimal number has an asterisk next to it and several items have that dotted decimal
number, you can use more than one item from the list, but you cannot use the items more than
once each. In the previous example, you can write HOST STATE, but you cannot write HOST
HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least once. A dotted decimal
number followed by the + symbol indicates that the syntax element must be included one or more
times. That is, it must be included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines 2+, 2 HOST, and
2 STATE, you know that you must include HOST, STATE, or both. Similar to the * symbol, the +
symbol can repeat a particular item if it is the only item with that dotted decimal number. The +
symbol, like the * symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix A. Accessibility 333

334 z/OS: z/OS DFSMStvs Administration Guide

Notices

This information was developed for products and services that are offered in the USA or elsewhere.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that only
that IBM product, program, or service may be used. Any functionally equivalent product, program, or
service that does not infringe any IBM intellectual property right may be used instead. However, it is the
user's responsibility to evaluate and verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual
Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

This information could include missing, incorrect, or broken hyperlinks. Hyperlinks are maintained in only
the HTML plug-in output for the Knowledge Centers. Use of hyperlinks in other output formats of this
information is at your own risk.

Any references in this information to non-IBM websites are provided for convenience only and do not in
any manner serve as an endorsement of those websites. The materials at those websites are not part of
the materials for this IBM product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Site Counsel
2455 South Road

© Copyright IBM Corp. 2003, 2020 335

Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by
IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any
equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated
through extrapolation. Actual results may vary. Users of this document should verify the applicable data
for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary
notices are preserved. You may not distribute, display or make derivative work of these publications, or
any portion thereof, without the express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that
all proprietary notices are preserved. You may not make derivative works of these publications, or

336 z/OS: z/OS DFSMStvs Administration Guide

reproduce, distribute or display these publications or any portion thereof outside your enterprise, without
the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE
PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY, NON-
INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, ("Software Offerings") may use cookies
or other technologies to collect product usage information, to help improve the end user experience, to
tailor interactions with the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings can help enable you to
collect personally identifiable information. If this Software Offering uses cookies to collect personally
identifiable information, specific information about this offering’s use of cookies is set forth below.

Depending upon the configurations deployed, this Software Offering may use session cookies that collect
each user’s name, email address, phone number, or other personally identifiable information for purposes
of enhanced user usability and single sign-on configuration. These cookies can be disabled, but disabling
them will also eliminate the functionality they enable.

If the configurations deployed for this Software Offering provide you as customer the ability to collect
personally identifiable information from end users via cookies and other technologies, you should seek
your own legal advice about any laws applicable to such data collection, including any requirements for
notice and consent.

For more information about the use of various technologies, including cookies, for these purposes, see
IBM’s Privacy Policy at ibm.com/privacy and IBM’s Online Privacy Statement at ibm.com/privacy/details
in the section entitled “Cookies, Web Beacons and Other Technologies,” and the “IBM Software Products
and Software-as-a-Service Privacy Statement” at ibm.com/software/info/product-privacy.

Policy for unsupported hardware
Various z/OS elements, such as DFSMSdfp, JES2, JES3, and MVS, contain code that supports specific
hardware servers or devices. In some cases, this device-related element support remains in the product
even after the hardware devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported hardware devices. Software
problems related to these devices will not be accepted for service, and current service activity will cease
if a problem is determined to be associated with out-of-support devices. In such cases, fixes will not be
issued.

Notices 337

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS announcements can subsequently
change when service for particular servers or devices is withdrawn. Likewise, the levels of other software
products supported on a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels, samples, messages, and
product documentation) can include references to hardware and software that is no longer supported.

• For information about software support lifecycle, see: IBM Lifecycle Support for z/OS (www.ibm.com/
software/support/systemsz/lifecycle)

• For information about currently-supported IBM hardware, contact your IBM representative.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
Copyright and Trademark information (www.ibm.com/legal/copytrade.shtml).

338 z/OS: z/OS DFSMStvs Administration Guide

http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/software/support/systemsz/lifecycle
http://www.ibm.com/legal/copytrade.shtml

Glossary

This glossary defines technical terms and abbreviations. If you do not find the term you are looking for,
refer to the index of the appropriate DFSMS manual.

This glossary includes terms and definitions from the following sources:

• The American National Standard Dictionary for Information Systems, ANSI X3.172-1990, copyright
1990 by the American National Standards Institute (ANSI). You can purchase copies from the American
National Standards Institute, 11 West 42nd Street, New York, New York 10036. The symbol (A) after a
definition identifies it as a definition from this source.

• The Information Technology Vocabulary developed by Subcommittee 1, Joint Technical Committee 1, of
the International Organization for Standardization and the International Electrotechnical Commission
(ISO/IEC JTC1/SC1). The symbol (I) after a definition identifies it as a definition from the published part
of this vocabulary. The symbol (T) after a definition identifies it as a definition from a draft international
standard, committee draft, or working paper that ISO/IEC JTC1/SC1 is developing, indicating that the
participating National Bodies of SC1 have not yet reached final agreement on the definition.

• The IBM Dictionary of Computing, New York: McGraw-Hill, 1994.

The following cross-reference is used in this glossary:

See
Refers to a preferred term, a synonym, or a term that is the expanded form of an abbreviation or
acronym.

See also
Refers to a related term.

Contrast with
Refers to a contrasting term.

A
access method control block (ACB)

A control block that links an application program to VSAM or VTAM programs.
access method services

A multifunction service program that manages VSAM and non-VSAM data sets. Access method
services provides the following services:

• Define and allocate space for data sets and catalogs
• Convert indexed-sequential data sets to key-sequenced data sets
• Modify data set attributes in the catalog
• Reorganize data sets
• Facilitate data portability among operating systems
• Create backup copies of data sets
• Assist in making inaccessible data sets accessible
• List the records of data sets and catalogs
• Define and build alternate indexes

ACID transaction
A transaction involving multiple resource managers using the two-phase commit process to ensure
ACID (atomic, consistent, isolated, and durable) properties.

• Atomic: When an application changes data in multiple resource managers as a single transaction,
and all of the changes are accomplished through a single commit request by a syncpoint manager,
the transaction is called atomic. If the transaction is successful, all the changes will be committed.
If any piece of the transaction is not successful, then all of the changes will be backed out. An

Glossary

© Copyright IBM Corp. 2003, 2020 339

atomic instant occurs when the syncpoint manager in a two-phase commit process logs a commit
record for the transaction.

• Consistent: Applications involved in an ACID transaction must be written to maintain a consistent
view of data. The transaction either makes valid changes to data or returns all the data to its state
before the transaction was started.

• Isolated: Databases involved in an ACID transaction isolate the updates to their data so that only
the application changing the data knows about the individual update requests until the transaction
is complete.

• Durable: Databases involved in an ACID transaction ensure that the data is persistent, both before
and after the transaction, regardless of success or failure.

ACS routine
See automatic class selection (ACS) routine.

activity keypoint (AKP)
In DFSMStvs, a record of task-entry status in the system log made on a periodic basis to facilitate the
identification of transaction backout information during restart. In the event of an uncontrolled
shutdown and subsequent restart, activity keypoints can shorten the process of backward scanning
through the system log.

activity keypoint interval
The number of logging operations that the system logger performs between keypoints.

addressed-direct access
In VSAM, the retrieval or storage of a data record identified by its relative byte address (RBA),
independent of the record's location relative to the previously retrieved or stored record.

addressed-sequential access
In VSAM, the retrieval or storage of a data record in its entry sequence relative to the previously
retrieved or stored record.

addressing mode (AMODE)
An attribute of an entry point in a program that identifies the addressing range in virtual storage that
the module is capable of addressing. In 24-bit addressing mode, only 24-bit addresses can be used.

AKP
See activity keypoint.

alias
An alternative name for a catalog, a non-VSAM data set, or a member of a partitioned data set (PDS)
or partitioned data set extended (PDSE).

alias entry
An entry that relates an alias to the real entry name of a user catalog or non-VSAM data set.

allocation
Generically, the entire process of obtaining a volume and unit of external storage, and setting aside
space on that storage for a data set.
The process of connecting a program to a data set or devices.

alternate index
A key-sequenced data set that contains index entries organized by the alternate keys of its associated
base data records. It provides an alternate means of locating records in the data component of a
cluster on which the alternate index is based.

alternate key
One or more characters within a data record used to identify the data record or to control its use.
Unlike the primary key, the alternate key can identify more than one data record. An alternate key is
used to build an alternate index or to locate one or more base data records through an alternate
index. See also generic key, key, and key field.

application owning region
A CICS address space whose primary purpose is to manage application programs.

Glossary

340 z/OS: z/OS DFSMStvs Administration Guide

application
The use to which an access method is put or the end result that it serves, contrasted to the internal
operation of the access method.

ARM
See automatic restart manager.

atomic
Pertaining to a transaction's changes to the state of resources: either all changes happen or none
happen. It would not be possible for some updates to be made but for others to fail and still maintain
data integrity. The process of making final changes to the data is committing.

automatic class selection (ACS) routine
A procedural set of ACS language statements. Based on a set of input variables, the ACS language
statements generate the name of a predefined SMS class, or a list of names of predefined storage
groups, for an MVS data set.

automatic restart manager (ARM)
A z/OS recovery function that can automatically restart a batch job, started task, or abstract resource
after it ends unexpectedly or after the system on which it is running goes down unexpectedly.

B
backout

A request to remove all changes to resources since the last commit or backout or for the first unit of
recovery, since the beginning of the application. Backout is also called rollback or abort.

backout log
See undo log.

binder
The DFSMS program that processes the output of language translators and compilers into an
executable program (load module or program object). It replaces the linkage editor and batch loader
in in z/OS.

blocking
The process of combining two or more records into one block.

block size
The number of records, words, or characters in a block; usually specified in bytes.

C
CA

See control area.
catalog

A data set that contains extensive information required to locate other data sets, to allocate and
deallocate storage space, to verify the access authority of a program or operator, and to accumulate
data set usage statistics. (A) (I)

central processor complex (CPC)
A physical collection of hardware that consists of main storage, one or more central processors,
timers, and channels.

CI
See control interval.

CICS
Customer Information Control System.

CICSVR
Customer Information Control System VSAM Recovery, a forward recovery utility, which can can
perform forward recovery for DFSMStvs and others as well as for CICS.

class
See SMS class.

Glossary

Glossary 341

cluster
A data component and an index component in a VSAM key-sequenced data set; or a data component
alone in a VSAM entry-sequenced data set.

commit
A request to make all changes to recoverable resources permanent since the last commit or backout
or, for the first unit of recovery, since the beginning of the application.

component
A named, cataloged collection of stored records. A component, the lowest member of the hierarchy of
data structures that can be cataloged, contains no named subsets.

compress
(1) To reduce the amount of storage required for a given data set by having the system replace
identical words or phrases with a shorter token associated with the word or phrase. (2) To reclaim the
unused and unavailable space in a partitioned data set that results from deleting or modifying
members by moving all unused space to the end of the data set.

compressed format data set
A type of extended format data set created in a data format which supports record level compression.

configuration
The arrangement of a computer system as defined by the characteristics of its functional units.
See SMS configuration.

consistent read
A level of read integrity that VSAM RLS obtains for a share lock on the record that is accessed by a
GET or POINT request. Consistent read ensures that the reader does not see an uncommitted change
made by another transaction.

consistent read explicit
A level of read integrity that is the same as consistent read, except that VSAM RLS keeps the share
lock on the record until the end of the transaction. This option is available only to CICS transactions
and to DFSMStvs. VSAM does not recognize the end of the transaction for usage other than by CICS or
DFSMStvs. This capability is often referred to as repeatable read.

context
Sometimes called a work context, a context is a representation of a work request, or part of a work
request, in an application. A context might have a series of units of recovery associated with it. See
also native context and privately managed context.

control area (CA)
(1) A group of control intervals used as a unit for formatting a data set before adding records to it.

(2) In a key-sequenced data set, the set of control intervals, pointed to by a sequence-set index
record, that is used for distributing free space and for placing a sequence-set index record adjacent to
its data.

control blocks in common (CBIC)
A facility that allows a user to open a VSAM data set so the VSAM control blocks are placed in the
common service area (CSA) of the MVS operating system. This provides the capability for multiple
memory accesses to a single VSAM control structure for the same VSAM data set.

control interval (CI)
A fixed-length area of auxiliary storage space in which VSAM stores records. It is the unit of
information (an integer multiple of block size) transmitted to or from auxiliary storage by VSAM.

control interval definition field (CIDF)
In VSAM, the 4 bytes at the end of a control interval that contain the displacement from the beginning
of the control interval to the start of the free space and the length of the free space. If the length is 0,
the displacement is to the beginning of the control information.

control program
A routine, usually part of an operating system, that aids in controlling the operations and managing
the resources of a computer system.

Glossary

342 z/OS: z/OS DFSMStvs Administration Guide

control unit
A hardware device that controls the reading, writing, or displaying of data at one or more input/output
devices. See also storage control.

cross memory
A synchronous method of communication between address spaces.

coupling facility (CF)
The hardware that provides high-speed caching, list processing, and locking functions in a Parallel
Sysplex.

coupling facility (CF) cache structure
The CF hardware that provides a data cache.

coupling facility (CF) lock structure
The CF hardware that supports Parallel Sysplex-wide locking.

CPC
See central processor complex.

D
data class

A collection of allocation and space attributes, defined by the storage administrator, that are used to
create a data set.

data extent block (DEB)
A control block that describes the physical attributes of the data set.

Data Facility Storage Management Subsystem (DFSMS)
An operating environment that helps automate and centralize the management of storage. To manage
storage, SMS provides the storage administrator with control over data class, storage class,
management class, storage group, and automatic class selection routine definitions.

Data Facility Storage Management Subsystem data facility product (DFSMSdfp)
A DFSMS functional component or base element of z/OS that provides functions for storage
management, data management, program management, device management, and distributed data
access.

Data Facility Storage Management Subsystem data set services (DFSMSdss)
A DFSMS functional component or base element of z/OS that is used to copy, move, dump, and
restore data sets and volumes.

Data Facility Storage Management Subsystem Transactional VSAM Services (DFSMStvs)
An IBM licensed program for running batch VSAM processing concurrently with CICS online
transactions. DFSMStvs users can run multiple batch jobs and online transactions against VSAM data,
in data sets defined as recoverable, with concurrent updates. DFSMStvs is a licensed component of
DFSMS

data record
A collection of items of information from the standpoint of its use in an application, as a user supplies
it to the system storage. Contrast with index record.

data security
Prevention of access to or use of data or programs without authorization. As used in this publication,
the safety of data from unauthorized use, theft, or purposeful destruction.

data set control block (DSCB)
A control block in the VTOC that describes data set characteristics.

data synchronization
The process by which the system ensures that data previously given to the system via WRITE, CHECK,
PUT, and PUTX macros is written to some form of nonvolatile storage.

device number
The reference number assigned to any external device.

DFSMS
See Data Facility Storage Management Subsystem.

Glossary

Glossary 343

DFSMSdfp
See Data Facility Storage Management Subsystem data facility product.

DFSMSdss
See Data Facility Storage Management Subsystem data set services.

DFSMStvs
See Data Facility Storage Management Subsystem Transactional VSAM Services.

dictionary
A table that associates words, phrases, or data patterns to shorter tokens. The tokens are used to
replace the associated words, phrases, or data patterns when a data set is compressed.

direct access
The retrieval or storage of data by a reference to its location in a data set rather than relative to the
previously retrieved or stored data. See also addressed-direct access.

direct access device space management (DADSM)
A DFP component used to control space allocation and deallocation on DASD.

direct data set
A data set whose records are in random order on a direct access volume. Each record is stored or
retrieved according to its actual address or its address according to the beginning of the data set.
Normally accessed via BDAM.

directly-allocated printer
A printer that is allocated to the application program.

dynamic buffering
A user-specified option that requests that the system handle acquisition, assignment, and release of
buffers.

E
entry-sequenced data set

A data set whose records are loaded without respect to their contents, and whose relative byte
addresses (RBAs) cannot change. Records are retrieved and stored by addressed access, and new
records are added at the end of the data set.

ESA
See Enterprise Systems Architecture.

exclusive control
A way of preventing multiple write-add BDAM requests from updating the same dummy record or
writing over the same available space on a track. When specified by the user, the exclusive control
lock requests that the system prevent the data block that is about to be read from being modified by
other requests; it is specified in a read macro and released in a write or relex macro. When a write-
add request is about to be processed, the system automatically gets exclusive control of either the
data set or the track.

extended format
The format of a data set that has a data set name type (DSNTYPE) of EXTENDED, for example,
extended format and extended key-sequenced data sets. Data sets in extended format can be striped
or compressed. Data in an extended format VSAM KSDS can be compressed.

extended format data set
A sequential data set that is structured logically the same as a physical sequential data set but that is
stored in a different physical format. Extended format data sets consist of one or more stripes and can
take advantage of the sequential data striping access technique. See also striping and stripe.

extent
A continuous space on a DASD volume occupied by a data set or portion of a data set.

F
field

In a record or control block, a specified area used for a particular category of data or control
information.

Glossary

344 z/OS: z/OS DFSMStvs Administration Guide

file-owning region (FOR)
A data-owning region, a CICS address space whose primary purpose is to manage files and
databases.

file system
In the z/OS UNIX hierarchical file system environment, the collection of files and file management
structures on a physical or logical mass storage device, such as a diskette or minidisk. See also
hierarchical file system data set.

FOR
See file-owning region.

forgotten
The state of a unit of recovery that occurs when the unit of recovery has completed and RRS has
deleted its log records.

format-D
ASCII variable-length records.

format-DB
ASCII variable-length, blocked records.

format-DBS
ASCII variable-length, blocked spanned records.

format-DS
ASCII variable-length, spanned records.

format-F
Fixed-length records.

format-FB
Fixed-length, blocked records.

format-FBS
Fixed-length, blocked, standard records.

format-FS
Fixed-length, standard records.

format-U
Undefined-length records.

format-V
Variable-length records.

format-VB
Variable-length, blocked records.

format-VBS
Variable-length, blocked, spanned records.

format-VS
Variable-length, spanned records.

Forward recoverable data set
A data set that was defined with the LOG(ALL) attribute option.

forward recovery
A process used to recover a lost data set. The data is recovered from a backup copy and all the
changes that were made after the backup copy was taken are applied. The forward recovery process
requires a log of the changes made to a data set, together with a date and time stamp. The log of
changes is called the forward recovery log.

forward recovery log
A log that contains copies of records after they were changed. The forward recovery log records are
used by forward recovery programs and products such as CICS VSAM Recovery (CICSVR) to
reconstruct the data set in the event of hardware or software damage to the data set.

Glossary

Glossary 345

free space
Space reserved within the control intervals of a key-sequenced data set for inserting new records into
the data set in key sequence or for lengthening records already there; also, whole control intervals
reserved in a control area for the same purpose.

G
gigabyte

1 073 741 824 bytes.
global shared resources (GSR)

. Indicates use of a global resource pool.
GSR

See global shared resources.
H
header label

An internal label, immediately preceding the first record of a file, that identifies the file and contains
data used in file control.
The label or data set label that precedes the data records on a unit of recording medium.

hierarchical file system
A POSIX-compliant file system, which is a collection of files and directories organized in a hierarchical
structure, that can be accessed using z/OS UNIX System Services. It enables an application written in
a high-level language to create, store, retrieve, and manipulate data on a storage device. The view of
the data to the end user is a hierarchical directory structure similar to IBM DOS. See also file system.

I
index record

A collection of data-record pointers retrieved and stored together. Contrast with index record
instance

The code and control blocks that represent access to VSAM data sets through DFSMStvs. An instance
of DFSMStvs starts when DFSMStvs is initialized as part of SMSVSAM address space initialization or
enabled by operator command. The instance ends when DFSMStvs enters a quiesced or disabled
state or when the SMSVSAM address space ends.
A peer recovery instance of DFSMStvs serves to recover from the failure of some other DFSMStvs
instance that ran on another system within a sysplex when the system on which the other DFSMStvs
instance was running failed. The peer recovery instance shares the SMSVSAM address space, and
certain control blocks, with a "native" DFSMStvs instance. Automatic restart manager (ARM) can start
a peer recovery instance automatically when a system in a sysplex fails. A peer recovery instance can
also be started manually by operator command. The instance ends when it completes its peer
recovery process, when it is stopped by operator command and enters a quiesced state, or when the
SMSVSAM address space ends.

in-backout
The state of a unit of recovery when one or more resource managers reply negatively to a commit
request. The syncpoint manager tells each resource manager to back out the changes. The resources
are returned to the values they had before the unit of recovery was processed. When all the resource
managers have backed out the changes, the syncpoint manager notifies the application.

in-commit
The state of a unit of recovery when all resource managers reply positively to a commit request. The
syncpoint manager tells each resource manager to make its changes permanent. When all resource
managers have made the changes, the syncpoint manager notifies the application.

in-completion
The state of a unit of recovery when any enabled completion exit routines run. After this phase
completes, RRS passes a return code to the application indicating that the changes have been
committed or backed out.

Glossary

346 z/OS: z/OS DFSMStvs Administration Guide

in-doubt
For a distributed request, the state of a unit of recovery on the originating system from the end of the
prepare phase of the two-phase commit until the distributed syncpoint resource manager (DSRM)
returns a commit or backout request.

in-end
The state of a unit of recovery when the resource managers have responded to the syncpoint manager
that commit or backout is complete. The unit of recovery is logically complete.

in-flight
The state of a unit of recovery when an application accesses protected resources. The resource
managers express interest in the unit of recovery.

in-forget
The state of a unit of recovery for a distributed request. The unit of recovery has completed, but RRS
is waiting for the server distributed syncpoint resource manager (SDSRM) to indicate how to process
the log records for the unit of recovery.

in-only-agent
The state of a unit of recovery when only one resource manager has expressed an interest in the unit
of recovery. RRS invokes the ONLY_AGENT exit routine to tell the resource manager to process the
commit immediately.

in-prepare
The state of a unit of recovery when the application has issued a commit request and the syncpoint
manager tells each resource manager to prepare its resources for commit or backout.

in-reset
The state of a unit of recovery before an application program has used any protected resources.

in-state-check
The state of a unit of recovery when the application has issued a commit request and the resource
managers check if their resources are in the correct state.

K
key-sequenced data set (KSDS)

A VSAM data set whose records are loaded in ascending key sequence and controlled by an index.
Records are retrieved and stored by keyed access or by addressed access, and new records are
inserted in key sequence because of free space allocated in the data set. Relative byte addresses of
records can change because of control interval or control area splits.

keyed-sequential access
In VSAM, the retrieval or storage of a data record in its key or relative-record sequence, relative to the
previously retrieved or stored record as defined by the sequence set of an index.

kilobyte
1024 bytes.

L
library

Synonym for partitioned data set. See partitioned data set.
linear data set (LDS)

A VSAM data set that contains data but no control information. A linear data set can be accessed as a
byte-addressable string in virtual storage.

load module
The output of the linkage editor; a program in a format ready to load into virtual storage for execution.
Contrast with program object.

local shared resources (LSR)
Resources in the local resource pool.

locate mode
A transmittal mode in which a pointer to a record is provided instead of moving the record. Contrast
with move mode.

Glossary

Glossary 347

log of logs
A log that DFSMStvs and CICS write to provide information to forward recovery programs such as
CICS VSAM Recovery (CICSVR). The log of logs is a form of user journal that contains copies of the tie-
up records that DFSMStvs or CICS has written to forward recovery logs. This log provides a summary
of which recoverable VSAM data sets that DFSMStvs or CICS has used, when they were used, and to
which log stream the forward recovery log records were written.

If you have a forward recovery product that can utilize the log of logs, ensure that all CICS regions that
share the recoverable data sets write to the same log-of-logs log stream.

log stream
A log stream is a collection of data in log blocks that reside in the coupling facility or on DASD.

log tail
In DFSMStvs, the oldest log record of interest. Log tail deletion is the process of deleting unneeded
records that are older than the oldest record of interest to DFSMStvs.

log trimming
Removal of records that are no longer required from the DFSMStvs primary system log or secondary
system log.

LSR
See local shared resources.

M
management class

A collection of management attributes, defined by the storage administrator, used to control the
release of allocated but unused space; to control the retention, migration, and back up of data sets; to
control the retention and back up of aggregate groups, and to control the retention, back up, and class
transition of objects.

member
A partition of a partitioned data set or PDSE.

move mode
A transmittal mode in which the record to be processed is moved into a user work area.

MVS
Multiple Virtual Storage.

N
native context

The automatically occurring context of a work request. A native context is associated with a single
task. This context always exists.

non-VSAM data set
A data set allocated and accessed using one of the following methods: BDAM, BPAM, BISAM, BSAM,
QSAM, QISAM.

nonrecoverable data set
A data set for which no changes are logged because its LOG parameter is either undefined or set to
NONE. Neither backout nor forward recovery is provided for a nonrecoverable data set.

nonshared resources
A data set that does not use shared resources.

NSR
See nonshared resources.

O
object

A named byte stream having no specific format or record orientation.
z/OS UNIX System Services (z/OS UNIX)

The set of functions provided by the SHELL and UTILITIES, kernel, debugger, file system, C/C++ Run-
Time Library, Language Environment, and other elements of the z/OS operating system that allow
users to write and run application programs that conform to UNIX standards.

Glossary

348 z/OS: z/OS DFSMStvs Administration Guide

operand
Information entered with a command name to define the data on which a command operates and to
control the execution of the command.

optimum block size
For non-VSAM data sets, optimum block size represents the block size that would result in the
smallest amount of space utilization on a device, taking into consideration record length and device
characteristics.

P
Parallel Sysplex

A sysplex that uses one or more coupling facilities.
partitioned data set (PDS)

A data set on direct access storage that is divided into partitions, called members, each of which can
contain a program, part of a program, or data.

partitioned data set extended (PDSE)
An system-managed data set that contains an indexed directory and members that are similar to the
directory and members of partitioned data sets. A PDSE can be used instead of a partitioned data set.

path
A named, logical entity composed of one or more clusters (an alternate index and its base cluster, for
example).

PDS directory
A set of records in a partitioned data set (PDS) used to relate member names to their locations on a
DASD volume.

peer recovery
A recovery process that occurs when an application fails. Peer users can perform recovery and clean
up resources.

peer recovery instance
See instance.

pointer
An address or other indication of location. For example, an RBA is a pointer that gives the relative
location of a data record or a control interval in the data set to which it belongs.

primary key
One or more characters within a data record used to identify the data record or control its use. A
primary key must be unique.

primary space allocation
Amount of space requested by a user for a data set when it is created. Contrast with secondary space
allocation.

primary system log
See undo log.

privately managed context
A context created and owned by a resource manager. The resource manager can switch a privately
managed context from one task to another. Privately managed contexts are usually used by a
resource manager that is also a work manager, like IMS. This sort of work manager can accept and
manage transactions, or other kinds of work, from outside the system.

program library
A type of PDSE which contains program objects only. A PDSE from which programs are loaded into
memory for execution by the operating system.

program object
All or part of a computer program in a form suitable for loading into virtual storage for execution.
Program objects are stored in PDSE program libraries and have fewer restrictions than load modules.
Program objects are produced by the binder.

Glossary

Glossary 349

protected resource
A local or distributed resource that can be changed in a synchronized manner during processing
coordinated by a syncpoint manager, such as RRS. Databases, conversations between two
communications managers, or product-specific resources can all be protected resources. A protected
resource is also often called a recoverable resource.

R
random access

See direct access.
record definition field (RDF)

A field stored as part of a stored record segment; it contains the control information required to
manage stored record segments within a control interval.

record-level sharing
See VSAM record-level sharing (VSAM RLS).

recoverable data set
A data set that can be recovered using backout or forward recovery processing, defined with the LOG
parameter set to UNDO or ALL. See also protected resource.

recoverable resource
A data set that can be recovered using commit, backout, or forward recovery processing because its
LOG parameter is set to UNDO or ALL.

register
An internal computer component capable of storing a specified amount of data and accepting or
transferring this data rapidly.

relative byte address (RBA)
The displacement of a data record or a control interval from the beginning of the data set to which it
belongs; independent of the manner in which the data set is stored.

relative record data set (RRDS)
A type of VSAM data set whose records have fixed or variable lengths, and are accessed by relative
record number.

residence mode (RMODE)
The attribute of a load module that identifies where in virtual storage the program will reside (above
or below 16 megabytes).

resource
A database, a conversation between two systems, or a product-specific item. A resource can be local
(residing on the current system) or distributed (residing on another system). A resource is protected
when it can be changed in a synchronized manner.

resource manager (RM)
A subsystem or component, such as CICS, IMS, or DB2, or DFSMStvs, that manages resources that
can be involved in transactions. There are three types of resource managers: work managers, data
resource managers, and communication resource managers.

reusable data set
A VSAM data set that can be reused as a work data set, regardless of its old contents. It must not be a
base cluster of an alternate index.

RLS
See VSAM record-level sharing (VSAM RLS).

S
scheduling

The ability to request that a task set should be started at a particular interval or on occurrence of a
specified program interrupt.

secondary space allocation
Amount of additional space requested by the user for a data set when primary space is full. Contrast
with primary space allocation.

Glossary

350 z/OS: z/OS DFSMStvs Administration Guide

secondary system log
See shunt log.

security
See data security.

sequence checking
The process of verifying the order of a set of records relative to some field's collating sequence.

sequential access
The retrieval or storage of a data record in: its entry sequence, its key sequence, or its relative record
number sequence, relative to the previously retrieved or stored record. See also addressed-sequential
access and keyed-sequential access.

sequential data set
A data set whose records are organized on the basis of their successive physical positions, such as on
magnetic tape. Contrast with direct data set.

service request block (SRB)
A system control block used for dispatching tasks.

shared lock
A lock that several tasks can hold.

shared resources
A set of functions that permit the sharing of a pool of I/O-related control blocks, channel programs,
and buffers among several VSAM data sets open at the same time.

shunt
The process of moving failed work or long-running work from the primary system log to the secondary
system log. If a unit of work fails, it is removed (shunted) from the primary system log to the
secondary system log, pending recovery from the failure.

shunt log
The secondary system log, which contains entries that were shunted to the log when DFSMStvs was
unable to finish processing sync points. If a unit of work fails, it is removed (shunted) from the primary
system log to the secondary system log, pending recovery from the failure.

shunted
The state of a unit of recovery when it has been moved from the primary system log to the secondary
system log because of a failed or long-running unit of work.

slot
For a fixed-length relative record data set, the data area addressed by a relative record number, which
might contain a record or be empty.

single point of failure
An environment in which one failure can result in simultaneous loss of both the coupling-facility list
structure for a log stream and the local storage-buffer copy.

skip-sequential access
Keyed-sequential retrieval or storage of records here and there throughout a data set, skipping
automatically to the desired record or collating position for insertion: VSAM scans the sequence set to
find a record or a collating position. Valid for processing in ascending sequences only.

SMF
See System Management Facilities.

SMS class
A list of attributes that SMS applies to data sets having similar allocation (data class), performance
(storage class), or backup and retention (management class) needs.

SMS configuration
A configuration base, Storage Management Subsystem class, group, library, and drive definitions, and
ACS routines that the Storage Management Subsystem uses to manage storage.

SMS-managed data set
A data set that has been assigned a storage class.

Glossary

Glossary 351

spanned record
For VSAM, a logical record whose length exceeds control interval length, and as a result, crosses, or
spans one or more control interval boundaries within a single control area. For non-VSAM, a spanned
record that occupies part or all of more than one block.

staging data set
Staging data sets are allocated by the system logger to safeguard log data when there is an error that
leaves the only copy of log data in a volatile configuration.

storage class
A collection of storage attributes that identify performance goals and availability requirements,
defined by the storage administrator, used to select a device that can meet those goals and
requirements.

storage control
The component in a storage subsystem that handles interaction between processor channel and
storage devices, runs channel commands, and controls storage devices.

storage group
A collection of storage volumes and attributes, defined by the storage administrator. The collections
can be a group of DASD volumes or tape volumes, or a group of DASD, optical, or tape volumes
treated as a single object storage hierarchy.

Storage Management Subsystem (SMS)
A DFSMS facility used to automate and to centralize the management of storage. Using SMS, a storage
administrator describes data allocation characteristics, performance and availability goals, backup
and retention requirements, and storage requirements to the system through data class, storage
class, management class, storage group, and ACS routine definitions.

store-through caching
A process used by the store-through user in which changed data is written to the cache structure and
to permanent storage at the same time and under the same serialization so that at any time, the data
in the cache structure matches the data in permanent storage.

stripe
The portion of a striped data set (for example, an extended format data set) that resides on one
volume. The records in that portion are not necessarily logically consecutive. The system distributes
records among the stripes such that the volumes can be read or written simultaneously to gain better
performance.

striping
A software implementation of a disk array that distributes data sets across multiple volumes to
improve performance.

system-managed storage
Storage managed by the Storage Management Subsystem. SMS attempts to deliver required services
for availability, performance, and space to applications. See also DFSMS environment.

system management facilities (SMF)
A component of z/OS that collects input/output (I/O) statistics, provided at the data set and storage
class levels, which help you monitor the performance of the direct access storage subsystem.

sync point
An end point during processing of a transaction. A sync point occurs when an update or modification
to one or more of the transaction's protected resources is logically complete. A sync point can be
either a commit or a backout.

syncpoint manager
A syncpoint manager is a function that coordinates the two-phase commit process for protected
resources, so that all changes to data are either committed or backed out. In z/OS, RRS can act as the
system level syncpoint manager.

T
tie-up record

A record that associates each data set after-image record in the log with a file name. You can
associate a data set with more than one file with the same data set. When a file is opened, DFSMStvs

Glossary

352 z/OS: z/OS DFSMStvs Administration Guide

records the association between the file and the data set as a tie-up record in the forward recovery
log. This information is also written to the log of logs. For non-BWO backups, the forward recovery
utility uses this tie-up record to apply the log records to the correct data sets.

transaction
A unit of application data processing initiated by a single request. A transaction might involve multiple
application programs and might require the initiation of one or more jobs for its execution. In
DFSMStvs, a transaction is a unit of work, which consists of one or more logical units of recovery.

transaction ID (TRANSID)
A number associated with each of several request parameter lists that define requests belonging to
the same data transaction.

TRANSID
See transaction ID.

trimming
See log trimming.

two-phase commit
The process used by syncpoint managers and resource managers to coordinate changes in an ACID
transaction.

In the first phase of the process, resource managers prepare a set of coordinated changes, but the
changes are uncommitted pending the agreement of all the resource managers involved in the
transaction. In the second phase, those changes are all committed if the resource managers all
agreed to them; or, the changes are all backed out if any of the resource managers failed or disagreed.

Using the two-phase commit process, multiple changes across multiple resource managers can be
treated as a single ACID transaction.

U
undo log

The primary system log, which contains images of changed records as they existed prior to being
changed. Backout processing uses the undo log to back out the changes that a transaction made to
resources.

unit address
The last two hexadecimal digits of a device address. This identifies the storage control and DAS string,
controller, and device to the channel subsystem. Often used interchangeably with control unit
address and device address in System/370 mode.

unit of recovery (UR)
A set of changes on one node that is committed or backed out as part of an ACID transaction.

A UR is implicitly started the first time a resource manager touches a protected resource on a node. A
UR ends when the two-phase commit process for the ACID transaction changing it completes.

unit of recovery identifier (URID)
Persistent tokens used by RRS to identify a transaction.

unit of work
In DFSMStvs, one or more logical units of recovery that are committed or backed out together as a
transaction.

universal character set (UCS)
A printer feature that permits the use of a variety of character arrays. Character sets used for these
printers are called UCS images.

update number
For a VSAM spanned record, a binary number in the second RDF of a record segment that indicates
how many times the segments of a spanned record should be equal. An inequality indicates a possible
error.

Glossary

Glossary 353

user buffering
The use of a work area in the processing program's address space for an I/O buffer; VSAM transmits
the contents of a control interval between the work area and direct access storage without
intermediary buffering.

V
virtual storage access method (VSAM)

An access method for direct or sequential processing of fixed and variable-length records on direct
access storage devices. You can organize the records in a VSAM data set in logical sequence by a key
field (key sequence), in the physical sequence in which they are written to the data set (entry
sequence), or by relative record numbers.

VSAM
See virtual storage access method.

VSAM record-level sharing (VSAM RLS)
An extension to VSAM that provides direct record-level sharing of VSAM data sets from multiple
address spaces across multiple systems. Record-level sharing uses the z/OS coupling facility to
provide cross-system locking, local buffer invalidation, and cross-system data caching.

VSAM volume data set (VVDS)
A data set that describes the characteristics of VSAM and system-managed data sets residing on a
given DASD volume; part of a catalog.

z/OS
A network computing-ready, integrated operating system consisting of more than 50 base elements
and integrated optional features delivered as a configured, tested system.

Glossary

354 z/OS: z/OS DFSMStvs Administration Guide

Index

Numerics
31-bit addressing mode

RMODE31 for ACB 127
32-name support 265

A
abend

building keyword 283
catalog management 281
documentation produced by 281
failure symptoms 280
keyword 280
sample job log output 282
SMS 281
SUMDUMP sample 281
SVC dump 281
SYSABEND, SYSMDUMP, SYSUDUMP data sets 282

ACB (access method control block)
access method specification 132
copies 133
data set processing parameters 123, 134
exit list 123
generation

assembly time 121
GENCB macro 131

index buffer allocation 133
macro

data set processing 128
parameters 121, 127, 128, 136

modifying 148
storage location 135
symbolic address 121
work area 136

access method services (IDCAMS)
summary of changes 7

accessibility
contact IBM 331
features 331

ACCODE parameter
ALLOCATE command 28

ACCOUNT parameter
DEFINE command

CLUSTER 58, 95
ACDS

allocating 266
definition 263
JCL allocation 266
relationship with SCDS 263
saving 264
share options 267
size calculation 264

ACTIVATE, ISMF command 269
address

indirect 117
address space

address space (continued)
starting 267

ADDVOLUMES parameter
ALTER command 58

Allocate Command
PDSE 30

ALLOCATE command
examples 43, 46
functional command format 24
parameters

optional 28, 43
required 28

restrictions 25
return codes 25
TSO/E naming convention 24

allocating SMS-managed data sets 25
allocation

ACDS 266
COMMDS 267
control data set 263
SCDS 266

ALTER command
ACCOUNT

optional parameters 58
entry types that can be altered 56
examples 71
format 54
parameters

optional 58, 71
required 57

RLS (record-level sharing) 59
alternate index

data and index components 87
defining 74, 76
defining with RECATALOG 89
record size 82
SMS-managed 87
upgrade set 177

alternate key 81
ALTERNATEINDEX parameter

DEFINE command 76
ALTFILE parameter

ALLOCATE command 29
AMS diagnostic aids

access method services 286
record level sharing 294

AOR (application-owning region) 17
assistive technologies 331
asynchronous

request
return codes 176

attribute
nullifying protection 65

AUTHORIZATION parameter
ALTER command 65
USVR 215

AVBLOCK parameter

Index 355

AVBLOCK parameter (continued)
ALLOCATE command 41

AVGREC parameter
ALLOCATE command 29

B
BFALN parameter

ALLOCATE command 29
BFTEK parameter

ALLOCATE command 29
BLDVRP macro

return codes 194
BLKSIZE parameter

ALLOCATE command 29
BLOCK parameter

ALLOCATE command 41
buffer

index allocation 133
search 160
VSAM

space allocation 123
buffer space

altering 58
buffering

user 126
BUFFERSPACE parameter

ALTER command 58
DEFINE command

ALTERNATEINDEX 78
CLUSTER 95

BUFL parameter
ALLOCATE command 30

BUFND parameter
ALTER command

RLS (record-level sharing) 59
BUFNI parameter

ALTER command 59
BUFNO parameter

ALLOCATE command 30
BUFOFF parameter

ALLOCATE command 31
BWO (backup-while-open)

ALTER command 66
CICS support 272
DEFINE command

CLUSTER 31, 59, 96
DFSMSdss support 272
DFSMStvs support 272
IMS data sets 272

C
CA (control area) 22
caching VSAM RLS data 16
catalog

entry
interrelationships 161
re-creating info from VVDS 103

information retrieval 161
object classes 161
record control interval numbers 161
search order 161

catalog management
diagnostic aids 289

CATALOG parameter
ALLOCATE command 34
ALTER command 59
DEFINE command

ALTERNATEINDEX 79
CLUSTER 96

CCSID parameter
ALTER command 60

CF (coupling facility) 15
CF cache for VSAM RLS data 16
CFRESET command

SHCDS command
fall back 52

CFRESETDS command
SHCDS command

fall back 52
CHECK macro

reason codes 175
return codes 175, 177

CI (control interval) 22
CICS (Customer Information Control System)

with VSAM RLS 17
CICS transactional recovery

VSAM recoverable data sets 19
classes, SMS 25
cleanup, volume 67
CLOSE macro

reason codes 173
return codes 173

cluster
altering attributes 71
altering entry names 72
components 108
data organization 99
defining

entry-sequenced 111
linear data set, example 115
relative record 111
specifying parameters 92

migrating
DB2 to linear data set, example 73

CLUSTER parameter
DEFINE command 92

CNVTAD macro
return and reason codes 177

CODE parameter
ALTER command 66

command
ALLOCATE 26
ALTER 54
DEFINE

ALTERNATEINDEX 74
CLUSTER 89

SHCDS 46
COMMDS

allocating 267
current utilization statistics 263, 265
definition 263, 265
JCL allocation 267
size calculation 265
sizing 264
SMS complex 263, 265

356 z/OS: z/OS DFSMStvs Administration Guide

component
code 177

compressed data set
control interval processing 155

concurrent data set access 142
concurrent data set positioning 135
Consistent read 23
Consistent read explicit 23
contact

z/OS 331
control

block
macro return and reason codes 174

interval
access 124
processing 125

control access
shared data 21

control area
preformatting

alternate index 85, 107
control block

record management information 303
control data set

allocating 263
description 263
fixed data fields 264
multivolume 266
sizing 264
structure changes 263

control data sets
allocating 263
types

active control data set (ACDS) 263
communications data set (COMMDS) 263
source control data set (SCDS) 263

control interval
crossing boundaries 107
split

JRNAD routine 203
CONTROLINTERVALSIZE parameter

DEFINE command
ALTERNATEINDEX 79
CLUSTER 97

coupling facility CF cache for VSAM RLS data 16
CR (consistent read) 22
CR subparameter

RLS parameter 23
CRE (consistent read explicit) 22
CRE subparameter

RLS parameter 23
cross-region sharing

ALTER command 68
DEFINE command

ALTERNATEINDEX 83
CLUSTER 105

cross-system sharing
ALTER command 68
DEFINE command

ALTERNATEINDEX 84
CLUSTER 106

Customer Information Control System (CICS) 17
CYLINDERS parameter

ALLOCATE command 41

CYLINDERS parameter (continued)
DEFINE command

ALTERNATEINDEX 77
CLUSTER 92

D
data

buffers
allocating 133

data class
description 25

data component
alternate index 75, 87
cluster

control interval size 97
record size 103
specifying attributes 90, 108

data control interval
VSAM RLS CF caching 16

data integrity
serialization 272
sharing data sets

cluster 105
DEFINE ALTERNATEINDEX command 83

data organization, specifying 99
data set

access method
processing parameters 134

altering expiration date 72
concurrent

access 142
positioning requests 135

defining cluster
description 92
examples 109, 116

organization 99
reusable 126
sharing

ALTER command 67
cluster 105
DEFINE ALTERNATEINDEX command 83

skip-sequential access 125
type 99

data sets
read sharing (recoverable) 19
read/write sharing (nonrecoverable) 19

data-in-virtual (DIV)
size limit 264

DATACLAS parameter
ALLOCATE command 31

DATACLASS parameter
DEFINE command

ALTERNATEINDEX 79
CLUSTER 97

DATASET parameter
ALLOCATE command 28

DB2 (Database 2)
migration to linear data set, example 73

DDNAME parameter
ALLOCATE command 28

DEFINE command
ACCOUNT

optional parameters 95

Index 357

DEFINE command (continued)
ALTERNATEINDEX

data component 75
examples 87, 89
format 74
index component 76
optional parameters 78, 87
required parameters 76, 78

CLUSTER
data component 90
data organization 99
examples 109, 116
format 89, 91
index component 91
optional parameters 108
required parameters 92, 95

USVR 215
DEN parameter

ALLOCATE command 32
DENYNONRLSUPDATE parameter

SHCDS command 51
DFSMStvs Administration Guide

summary of changes xvii
DIAGNOSE output 289
diagnostic aids

dump points 286
TEST keyword 287
TEST option 287
trace tables 286, 287

DIAGNS parameter
ALLOCATE command 33

DIR parameter
ALLOCATE command 33

direct
processing positioning state 187–189

disable status
meaning

DFSMStvs instance 271
DIV 264
DLVRP macro

return codes 195
DSNTYPE parameter

ALLOCATE command 33
DSORG parameter

ALLOCATE command 33
dump

abend data set 281
output data set 282
points 286
SVC 281

dump points 286
dynamic string extension 127
DYNAMNBR parameter

ALLOCATE command
description 24
example 43

E
ECSHARING parameter

ALTER command 60
EMPTY parameter

ALTER command 60
enable status

enable status (continued)
meaning

data set 271
DFSMStvs instance 271

ENDREQ macro
reason codes 175
return codes 175, 177

entry-sequenced cluster
defining 100
example

defining reusable 112
defining with expiration beyond 1999 115
defining with model 114

entryname subparameter
VVDS 92

EODAD (end-of-data-set) routine
programming considerations 200
register contents 200, 201

EODAD (end-of-data) routine
exit routine

EXCEPTIONEXIT 201
JRNAD, journalizing transactions 202

EXLST macro 130
EOV (end-of-volume)

return codes 195
ERASE macro

return and reason codes 175
ERASE parameter

ALTER command 60
DEFINE command

ALTERNATEINDEX 80
CLUSTER 98

EROPT parameter
ALLOCATE command 33

error
analysis

logical 209
physical 211

exits
logical 130
physical 130

error conditions
feedback information 304

ESDS (entry-sequenced data set)
access types 125
addressed access 124

exception
exit routine

I/O errors 201
exception, I/O error 61
EXCEPTIONEXIT parameter

ALTER command 61, 66
DEFINE command

ALTERNATEINDEX 80
CLUSTER 98

exit list
address 139
assembly time generation 129
copies 139
error analysis 139
example 131
generation 138, 140
modification 150
work area 139

358 z/OS: z/OS DFSMStvs Administration Guide

exit routine
address specification 133
batch override 199
EODAD 200
example 212
exception exit 201
IGW8PNRU 199
JRNAD 202
LERAD 209
returning to main program 198
RLSWAIT 210
SYNAD

analyzing physical errors 211
UPAD 213
user

written 196
values 130

EXLST macro
description 129
exception processing 197
exit routine values 130
parameter

VSAM exit locations 197
EXPDT parameter

ALLOCATE command 34
expiration date

example
altering, data set 72
defining, entry-sequenced cluster 115

EXPORT
restriction 104

extended addressing
GET macro 159
MRKBFR macro 159
POINT macro 159
SCHBFR macro 159, 161
WRTBFR macro 159
XRBA in RPL 159

F
failure symptoms

abend type-of-failure 280
fall back

SHCDS command
CFRESET 52
CFRESETDS 52

feedback xv
FILE

restriction 80, 98
FILE parameter

ALLOCATE command 28
ALTER command 61
DEFINE command

ALTERNATEINDEX 80
CLUSTER 98

FILEDATA parameter
ALTER command 61
Network File System Server 61

fixed data fields, sizing 264
fixed-length records

defining 104
FOR (file-owning region) 17
FOR parameter

FOR parameter (continued)
ALTER command 70
DEFINE command

ALTERNATEINDEX 86
CLUSTER 108

FRBIND parameter
SHCDS command 50

FREESPACE parameter
ALTER command 61
DEFINE command

ALTERNATEINDEX 80
CLUSTER 98

FRRESETRR parameter
SHCDS command 50

FRSETRR parameter
SHCDS command 50

FRUNBIND parameter
SHCDS command 50

G
GDG (generation data group)

example
altering attributes 72

GDS (generation data set)
cataloging maximum number 60
renaming 64
roll-in, example 72
ROLLIN parameter

ALTER command 67
SMS restriction 67
uncataloging 67

GENCB macro
ACB generation 131
chaining RPLs 144
example 137, 140
execute form 118, 146
exit list generation 138
generate form 119, 120, 146
list form 118, 146
parameter expressions 117
reason codes 174
reentrant environment 120
return codes 174
RPL generation 140

generate form
keyword 119
MODCB macro 152

generation data set 72
generic key

search argument 142
generic name

altering 72
GET macro

reason codes 175
return codes 175
search argument reason codes 186

GETIX macro
return and reason codes 175

global resource serialization 105
GRS (global resource serialization)

ALTER command 68
defining

alternate index 83

Index 359

GRS (global resource serialization) (continued)
defining (continued)

cluster 105
GSR (global shared resources)

VSAM macros 126
GTF (generalized trace facility) 291
GTF (Generalized Trace Facility)

printing GTF records 293
guaranteed space

data set allocation 43

I
I/O

error, exception 61
ICI (improved control interval access)

UPAD routine 213
IDALKADD macro

description
VSAM 147

IGDSMSxx
creating 267
description 267

IGDSSIIN
SMS initialization 268

IGGSHWPL macro 162
IGW8PNRU (batch override) routine

programming considerations 200
register contents 199

improved control interval (ICI) 213
incorrect output keyword

DFSMStvs 279
failure symptoms 277
VSAM catalog management 280
VSAM RLS 278

index
alternate

components 87
defining 76

buffer
allocation 133

cluster 91, 108
INDEXED parameter

DEFINE command
CLUSTER 100

INHIBIT parameter
ALTER command 62

initial program load (IPL) 268
insert strategy 125
integrated catalog facility catalog

information retrieval 161
locking and unlocking

ALTER 63
integrity, data serialization 272
interactive problem control system (IPCS)

printing GTF records 293
printing R/M trace output 314
trace table formatting for VSAM RLS 297
VSAM 293

intermodule trace table 286
intramodule trace table 286
IPCS 293
IPL 269
ISMF

ISMF (continued)
ACTIVATE command 269
dialog 266
primary option menu 268

J
JCL (job control language)

changed RLS parameter 6
journalizing transactions

exit 130
JRNAD exit 202

JRNAD exit routine
building parameter list 204
control interval splits 203
journalizing transactions 203
recording RBA changes 203

K
KEEP parameter

ALLOCATE command 34
key

field 81
generic search argument 142
value 86

key-sequenced cluster
data set 100
example

defining 109, 111, 113
specifying data and index parameters 109, 110

keyboard
navigation 331
PF keys 331
shortcut keys 331

keyed
access

I/O buffers 122, 133
KEYLEN parameter

ALLOCATE command 34
KEYOFF parameter

ALLOCATE command 34
KEYS parameter

ALTER command 62
DEFINE command

ALTERNATEINDEX 81
CLUSTER 100

keyword
abend

catalog management 281
program or ISMF session 280
SMS 281

incorrect output
catalog management 280
DFSMStvs 279
failure symptoms 277
VSAM RLS 278

message type-of-failure 283
message-related problems 283
VSAM message type-of-failure 285

KILOBYTES parameter
DEFINE command

ALTERNATEINDEX 77

360 z/OS: z/OS DFSMStvs Administration Guide

KILOBYTES parameter (continued)
DEFINE command (continued)

CLUSTER 92
KSDS (key-sequenced data set)

access
addressed 124
keyed 124
types 125

CI, CA splits 19

L
LABEL parameter

ALLOCATE command 34
length, alternate key 81
LERAD exit routine

error analysis 209
LIKE parameter

ALLOCATE command 35
LIMCT parameter

ALLOCATE command 36
LIMIT parameter

ALTER command 63
linear data set

altering 56
cluster

data organization 99
specifying 100

example
defining 115
migrating from DB2 73

LINEAR parameter
ALTER command 70
DEFINE command

CLUSTER 100
LISTALL parameter

SHCDS command 50
LISTDS parameter

SHCDS command 48
LISTRECOVERY parameter

SHCDS command 50
LISTSHUNTED parameter

SHCDS command 49
LISTSUBSYS parameter

SHCDS command 49
LISTSUBSYSDS parameter

SHCDS command 49
local locking

non-RLS 20
lock

record for RLS.
IDALKADD macro (VSAM) 147

lock manager (CF based) 15
LOCK parameter

ALTER command 63
LOG parameter

Alter command 62
ALTER command

Nullify command 66
DEFINE CLUSTER command 101

logical
error analysis routine 209
errors

positioning following 186

logical (continued)
errors (continued)

reason codes 178
LOGSTREAMID parameter

Alter command 63
ALTER command

Nullify command 66
DEFINE command

CLUSTER 101
LRECL parameter

ALLOCATE command 36
LSR (local shared resources)

buffer search 160
local resource pool 126

M
MACRF parameter

ACB 124
GENCB macro 134
index buffer allocation 133
MODCB macro 148
options 124
password specification 126

macro
data set processing types 124
forms 118

macros
DFSMSdfp summary of changes 10

macros, data management
ACB 121
EXLST 129
GENCB 131
IDALKADD

VSAM 147
MODCB 148
return and reason codes

VSAM 167, 196
RPL 152
SCHBFR 160
SHOWCAT 161

management class
description 25

MANAGEMENTCLASS parameter
ALTER command 64
DEFINE command

CLUSTER 102
MAXVOL parameter

ALLOCATE command 37
MEGABYTES parameter

DEFINE command
ALTERNATEINDEX 77
CLUSTER 93

message summary 11
messages

type-of-failure
failure symptoms 283
keyword 283
VSAM 285

MF=E keyword 118
MF=L keyword 118
MGMTCLAS ACS routine

Newname parameter 64
MGMTCLAS parameter

Index 361

MGMTCLAS parameter (continued)
ALLOCATE command 36

migration
DB2 to linear data set 73

MNTACQ macro
return and reason codes 177

MODCB macro
ACB modification 148
chaining RPLs 144
example 150
execute form 118, 121, 152
generate form 119, 152
list form 118, 152
parameter expressions 117, 148
reason codes 174
remote-list form 120
return codes 174
RPL modification 151

mode
request execution

requirements 22
MODEL parameter

DEFINE command
ALTERNATEINDEX 81
CLUSTER 102

model, example of using
defining entry-sequenced cluster 114

MODULE parameter
ALTER command 65

MRKBFR macro
return and reason codes 175

multiple-system sharing 68

N
NAME parameter

DEFINE command
ALTERNATEINDEX 76
CLUSTER 92

navigation
keyboard 331

NCP parameter
ALLOCATE command 37

NEW parameter
ALLOCATE command 37

NEWNAME parameter
ALTER command 64

No read integrity 23
NOECSHARING parameter

ALTER command 60
NOEMPTY parameter

ALTER command 60
NOERASE parameter

ALTER command 61
DEFINE command

ALTERNATEINDEX 80
CLUSTER 98

non-CICS
VSAM RLS 19

non-RLS access 20
NONINDEXED parameter

DEFINE command
CLUSTER 100

nonrecoverable data set concept 18

NONSPANNED parameter
DEFINE command

CLUSTER 107
nonspanned records

record size 103
NONUNIQUEKEY parameter

ALTER command 70
DEFINE command

ALTERNATEINDEX 86
NORECATALOG parameter

DEFINE command
ALTERNATEINDEX 82
CLUSTER 103

NOREUSE parameter
DEFINE command

ALTERNATEINDEX 83
CLUSTER 105

NOSCRATCH parameter
ALTER command 67

NOUPDATE parameter
ALTER command 70
RLS (record-level sharing) 70

NOUPGRADE parameter
ALTER command 71
DEFINE command

ALTERNATEINDEX 86
NOWRITECHECK parameter

ALTER command 71
DEFINE command

ALTERNATEINDEX 86
CLUSTER 108

NRI (no read integrity) 22
NRI subparameter

RLS parameter 23
NULLIFY parameter

ALTER command 65
NUMBERED parameter

DEFINE command
CLUSTER 100

O
O/C/EOV (open/close/end-of-volume) diagnostic aids

description 291
OAM

activating SCDSs 270
restarting 270

offset, alternate key 81
open and close 294
OPEN macro

return codes 167
OPEN/CLOSE/end-of-volume (O/C/EOV) diagnostic aids

description 291
GTF 291

OPTCD parameter
ALLOCATE command 37

OUTFILE parameter
SHCDS command 53

OWNER parameter
ALTER command 66
DEFINE command

ALTERNATEINDEX 81
CLUSTER 103

362 z/OS: z/OS DFSMStvs Administration Guide

P
PARALLEL parameter

ALLOCATE command 42
Parallel Sysplex name 135
parallel sysplex-wide locking

DFSMS lock manager 20
parameter list

length 118
MF=L keyword 118
modification

MF=E keyword 118
VSAM macros 118

reentrant environment 120
remote 118
remote generation 119
shared 120
simple 118

PARM
TEST option 287

partitioned data set
renaming 57

path
base cluster access 122

PDSE
Allocate Command 30

PERMITNONRLSUPDATE example 53
PERMITNONRLSUPDATE parameter

SHCDS command 51
physical errors

analyzing 211
request macro reason codes 189

POINT macro
positioning 186
reason codes 175
return codes 175
search argument reason codes 186

POSITION parameter
ALLOCATE command 38

preformatting
control area

alternate index 85, 107
primary space allocation

alternate index 78
cluster 94

prime key field
specifying length of 100

PRIVATE parameter
ALLOCATE command 38

PROTECT parameter
ALLOCATE command 38

protection attribute
nullifying 65

PURGE SPHERE parameter
SHCDS command 52

PURGE URID parameter
SHCDS command 52

PUT macro
return and reason codes 175

PUTIX macro
return and reason codes 175

Q
quick reference

VSAM User-Written Exit Routines 196
quiesce status

meaning
data set 271
DFSMStvs instance 271

R
RAMAC Virtual Array 266
RBA (relative byte address)

JRNAD
recording changes 203

physical error control interval 189
reason codes

CLOSE macro 173
control block macro return codes 174
logical errors 178
OPEN macro 167
physical errors 189
positioning state 187–189
RPL feedback area 175, 177
VSAM macros 175

RECATALOG parameter
DEFINE command

ALTERNATEINDEX 82
CLUSTER 103

RECFM parameter
ALLOCATE command 38

record
characteristics 38
fixed-length 104
format 38
length

altering 66
alternate index 82
cluster 103

management
reason codes 175
return codes 175

record locks
share and exclusive 21

record management
ABEND0CX error analysis 306
control block information 303
damaged data CIs 308
damaged data sets 306
damaged indexes 306
diagnostic aids 303
error conditions 304
exclusive control error analysis 305
physical I/O errors 308
printing trace output 314
return codes 314
RPL feedback 304
trace facility 308
UPAD 304
WAITX 304

record-level sharing 32
RECORDS parameter

DEFINE command
ALTERNATEINDEX 77

Index 363

RECORDS parameter (continued)
DEFINE command (continued)

CLUSTER 93
RECORDSIZE parameter

ALTER command 66
DEFINE command

ALTERNATEINDEX 82
CLUSTER 103

RECORG parameter
ALLOCATE command 39

recoverable data set concept 18
RECOVERY parameter

DEFINE command
ALTERNATEINDEX 85, 107

reentrant program
execute form 121
macro coding 117
remote-list form 120
RPL 120
shared parameter lists 120

REFDD parameter
ALLOCATE command 39

register
notation 117

RELATE parameter
DEFINE command

ALTERNATEINDEX 76
relative record data set 100
RELEASE parameter

ALLOCATE command 40
REMOVESUBSYS parameter

SHCDS command 51
REMOVEVOLUMES parameter

ALTER command 66
REPRO

restriction 104
requirements

manually activating the first SMS configuration 269
SHCDS 47

resource sharing 121
restarting OAM 270
restriction

EXPORT 104
FILE 80, 98
REPRO 104
REUSE 105

restrictions
allocating control data sets 263, 264
DEFINE CLUSTER parameters 89
DFSMStvs, VARY SMS command 271
JRNAD exit, no RLS support 202
using BFRNO with compressed data sets 160
using the SETSMS operator command 270

Restrictions
linear data set 100

retained locks
non-RLS access

SHCDS PERMITNONRLSUPDATE 21
RETENTION parameter

ALTER command 66
retention period

alternate index 85
cluster 108

RETPD parameter

RETPD parameter (continued)
ALLOCATE command 34

RETRY SPHERE parameter
SHCDS command 53

RETRY URID parameter
SHCDS command 53

return codes
ALLOCATE command 25
asynchronous request 176
BLDVRP macro 194
CHECK macro 175
CLOSE macro 173
CNVTAD macro 177
control block macro 174
DLVRP macro 195
end-of-volume 195
ENDREQ macro 175
ERASE macro 175
GET macro 175
GETIX macro 175
MNTACQ macro 177
MRKBFR macro 175
OPEN macro 167
POINT macro 175
PUT macro 175
PUTIX macro 175
RPLRTNCD 176
SCHBFR macro 175
shared resources macros 194
SHOWCAT macro 196
synchronous request 177
WRTBFR macro 175

return codes VSAM
control block manipulation 328
logical error 317
physical error 325
record management macros 315
VSAM record management 314

REUSE
restriction 105

REUSE parameter
ALLOCATE command 40
DEFINE command

ALTERNATEINDEX 83
CLUSTER 105

REUSE|NOREUSE parameter
ALTER command 67

RLS (record level sharing)
VSAM macros 126

RLS (record-level sharing)
ALLOCATE command 32
Alter command

NOUPDATE parameter 70
ALTER command

BUFND parameter 59
DEFINE CLUSTER command 100

RLS access 20
RLS CF caching 16
RLS component trace

trace facility 295
trace table formatting for VSAM RLS 297

RLS parameter
CR subparameter 23
CRE subparameter 23

364 z/OS: z/OS DFSMStvs Administration Guide

RLS parameter (continued)
NRI subparameter 23

RLS.
record locking

IDALKADD macro (VSAM) 147
RLSREAD, ACB parameter 127, 136
RLSWAIT exit 210
RLSWAIT exit routine 210
ROLLIN parameter

ALTER command 67
ROUND parameter

ALLOCATE command 40
routine

exit
VSAM user-written 197

RPL (request parameter list)
ACB address 141, 153
chaining

building 144
example 144
multiple record access 142
next address 143

coding guidance 198
component code 177
condition code 175, 177
copies 142
exit routine correction 198
feedback area 175, 177
GENCB macro 141
generation

assembly time 152
example 144, 145
execution time 140

macro
description 152
example 159
processing options 155
spanned VSAM records limitation 156
work area 153

modifying 151
reentrant environment 120
request parameters 143
search argument address 141, 154
work area

address 144
length 141
specifying 142

RRDS (relative record data set)
access types 125
data organization 100
defining, example 111
keyed access 124

S
S-type address constant

indirect 117
indirect address 117

SCDS
allocation 266
backup 263
changing SMS configurations 270
creating 263
definition 263

SCDS (continued)
error 266
JCL allocation 266
modifying 263
multivolume 266
relationship with ACDS 263
saving 264
size calculation 264
SMS configuration 263
updating 263

SCHBFR macro
description 160
return and reason codes 175
RPL parameters 160

SCHDS example using PERMITNONRLSUPDATE 53
SCHDS example with SYSPLEX 53
SCRATCH parameter

ALTER command 67
SECMODEL parameter

ALLOCATE command 40
secondary space allocation

alternate index 78
cluster 94

security (USVR) 215
sending to IBM

reader comments xv
sequential

processing positioning state 187–189
serialization

data integrity 272
server address space 15
SET operator command (T SMS command) 267, 269
SETSMS operator command 266, 267, 269, 270
share options 20
shared

parameter lists 118, 120
resources

control blocks 121
macro return codes 194

SHAREOPTIONS parameter
ALTER command 67
DEFINE command

ALTERNATEINDEX 83
CLUSTER 105

sharing
cross-region

ALTER command 68
DEFINE ALTERNATEINDEX command 83
DEFINE CLUSTER command 105

cross-system
ALTER command 68
DEFINE ALTERNATEINDEX command 84
DEFINE CLUSTER command 106

SHCDS
requirements 47

SHCDS command
format 46
FRDELETEUNBOUNDLOCKS 51
parameters 47, 48
record-level sharing (RLS) 46

shortcut keys 331
SHOWCAT macro

catalog entry interrelationships 161
description 161

Index 365

SHOWCAT macro (continued)
execute form 165
list form 165
operand expressions 166
parameter list 165
return codes 196
standard form 162
work area 162

SHOWCB macro
execute form 118
generate form 119
list form 118
parameter expressions 117
reason codes 174
return codes 174

skip-sequential
processing positioning state 187–189
types of data sets accessed 125

SMF records
interval time 270

SMS
32-name support 265
activation 263
address space 267
complex 266
configuration

activating 268
automatic activation 269
changing parameters 270
manual activation 268

IGDSMSxx 267
initialization 263
initialization parameters 267
IPL of SMS complex systems 269
preliminary steps 263

SMS (storage management subsystem)
abend keyword 281
ALLOCATE command 24
data set

classes, description 25
defining alternate index 87
sample SUMDUMP 281

SMS configuration
base configuration 263

SMSVSAM server 15
source control data set (SCDS)

SMS configuration 263
space allocation

alternate index
defining 77
free space 80

cluster
defining 93
free space 98

SPACE parameter
ALLOCATE command 41

SPANNED parameter
DEFINE command

CLUSTER 107
spanned records

record size 82, 103
SPEED parameter

DEFINE command
ALTERNATEINDEX 85, 107

storage administrator
primary option menu

accessing 268
storage class

description 25
STORAGECLASS parameter

ALTER command 69
DEFINE command

CLUSTER 108
STORCLAS parameter

ALLOCATE command 42
STRING parameter

ALTER command 65
striped

data sets
RLS (not supported) 21

STRNO parameter
ALTER command 69

subsystem name 128
SUMDUMP, symptom dump output 281
summary of changes

DFSMStvs Administration Guide xvii
Summary of changes xvii
SVC dumps

addresses 281
SYNAD exit routine

analyzing errors 211
example 212
programming considerations 211

synchronous request 177
SYS1.PARMLIB

IEASYSyy member 267
IEFSSNxx member 267
IGDSMSxx member

summary of DFSMStvs changes 5
initializing 267
modifying 263, 267

SYSABEND data set 282
SYSMDUMP data set 282
sysplex name 135
SYSPLEX qualifier with SCHDS 53
system-level commands

summary of changes 6
SYSUDUMP data set 282

T
T SMS command 267, 269
terminal monitor program 24
TEST keyword 287
TEST option 287
TESTCB macro

execute form 118
generate form 119
list form 118
parameter expressions 117
reason codes 174
return codes 174

TO parameter
ALTER command 69
DEFINE command

ALTERNATEINDEX 85
CLUSTER 108

trace table 297

366 z/OS: z/OS DFSMStvs Administration Guide

trace tables
description 286, 297
dump points 286
formatting for VSAM RLS 297
intermodule 286
intermodule trace table 286
intramodule 286
intramodule trace table 286
TEST option 287
trace tables 286
VSAM 286

tracing
record management trace 314

TRACKS parameter
ALLOCATE command 41
DEFINE command

ALTERNATEINDEX 77
CLUSTER 93

trademarks 338
transactions, journalizing 202
TRTCH parameter

ALLOCATE command 42
TYPE parameter

ALTER command 70

U
UCOUNT parameter

ALLOCATE command 42
UNINHIBIT parameter

ALTER command 62
UNIQUEKEY parameter

ALTER command 70
DEFINE command

ALTERNATEINDEX 86
UNIT parameter

ALLOCATE command 42
UNLOCK parameter

ALTER command 64
UPAD exit routine

cross-memory mode 214
parameter list 214
programming considerations 214
register contents at entry 213
user processing 213

UPDATE parameter
ALTER command 70

UPGRADE parameter
ALTER command 71
DEFINE command

ALTERNATEINDEX 86
USAR (user-security-authorization record) 215
user

processing exit 130
written exit routines 197, 212

user buffering 126
user interface

ISPF 331
TSO/E 331

USVR (user-security-verification routine) 215

V
variable relative record data set (VRRDS) 100
volume

adding to candidate list 58
cleanup 67
removing from candidate list 66

VOLUME parameter
ALLOCATE command 42

VOLUMES parameter
DEFINE command

ALTERNATEINDEX 78
CLUSTER 94

VSAM
linear data set

SMS.SCDS1.SCDS 266, 267
RLS data, CF cache for 16

VSAM (virtual storage access method)
ACB generation 131
catalog

information retrieval 161
dynamic string extension 127
I/O buffers 122
macros

execute form 118
generate form 119
list form 118
parameter expressions 117
return codes 167
shared resource return codes 194

OPEN storage 126
Parallel Sysplex name 135
parameter list 118
programming considerations 197
RLSREAD, ACB parameter 127, 136
subsystem name 128
sysplex name 135
user-written exit routines

coding guidelines 198
functions 197

VSAM Avoid LSR exclusive control wait 125
VSAM catalog management

abend keyword 281
incorrect output keyword 280

VSAM compressed data set
Altering data set characteristics 56

VSAM data set
NOREUSE parameter

ALTER command 67
REUSE parameter

ALTER command 67
VSAM diagnostic aids

ABEND0CX error analysis 306
catalog management 289
control block information 303
control block manipulation 328
damaged data CIs 308
damaged data sets 306
damaged indexes 306
description 314
diagnostic aids

description 285–287, 289, 291, 293, 294,
303–306, 308, 314, 316, 317, 325, 328

dump points 286

Index 367

VSAM diagnostic aids (continued)
error conditions 304
exclusive control error analysis 305
function codes 316
GTF 291
intermodule trace table 286
intramodule trace table 286
logical error return codes 317
open and close return codes 294
open/close/end-of-volume 291
physical error return codes 325
physical I/O errors 308
printing GTF records 293
record management diagnostic aids 303
record management trace facility 308
return codes 314
RPL feedback 304
SNAP dump facility 303
TEST option 287
trace tables 286
UPAD 304
WAITX 304

VSAM record management 308
VSAM record management trace facility 308
VSAM RLS

trace table formatting for VSAM RLS 297
tracing VSAM RLS 295

VSAM RLS CF caching 16
VSAM volume data set 92
VSEQ parameter

ALLOCATE command 43
VVDS (VSAM volume data set)

DEFINE CLUSTER example 114
entryname 92

W
WRITECHECK parameter

ALTER command 71
DEFINE command

ALTERNATEINDEX 86
CLUSTER 108

WRTBFR macro
return and reason codes 175

X
XRBA, RPL extended addressing parameter 159

368 z/OS: z/OS DFSMStvs Administration Guide

IBM®

Product Number: 5650-ZOS

GC52-1388-40

	Contents
	Figures
	Tables
	About this document
	Required product knowledge
	z/OS information
	Notational Conventions

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of Changes for z/OS V2R4
	Summary of changes for z/OS Version 2 Release 3 (V2R3) and its updates
	z/OS Version 2 Release 1 summary of changes

	Chapter 1. Evaluating, planning, and installing DFSMStvs
	Evaluating and planning for DFSMStvs
	Software dependencies
	z/OS
	DFSMS
	CICS Transaction Server
	CICS VSAM Recovery
	Global Resource Serialization
	z/OS Security Server
	IMS
	DB2
	Language products
	Language Environment
	Programming languages and environments

	Processing restrictions

	Migrating to z/OS Version 1 Release 4
	SYS1.PARMLIB changes for DFSMStvs
	JCL changes for DFSMStvs
	System command changes for DFSMStvs
	Access method services
	Changes to the executable macros
	Messages and codes
	Migration tasks
	Additional information

	Installing DFSMStvs
	Enabling DFSMStvs on your z/OS system
	Coding IGDSMSxx

	Chapter 2. Administering resources for DFSMStvs
	Controlling access to VSAM data sets
	Accessing data sets in DFSMStvs mode
	Using VSAM record-level sharing
	Record-level sharing CF caching
	CICS use of VSAM RLS
	Recoverable and nonrecoverable data sets
	CICS transactional recovery for VSAM recoverable data sets

	Non-CICS use of VSAM RLS
	Read sharing of recoverable data sets
	Read-sharing integrity across KSDS CI and CA splits
	Read and write sharing of nonrecoverable data sets
	Non-RLS access to VSAM data sets
	Differences between RLS access and non-RLS access
	Share options
	Locking
	Retaining locks
	Supporting non-RLS access while retained locks exist

	VSAM options not supported by RLS

	VSAM RLS request execution mode requirements
	VSAM RLS read integrity options

	Specifying read integrity
	Specifying a timeout value for lock requests

	Defining data sets for DFSMStvs access
	Allocating data sets
	Restrictions
	Allocation of SMS-managed data sets
	Allocation of non-SMS-managed data sets
	Return codes for the ALLOCATE command
	Syntax for ALLOCATE parameters
	Required parameters
	Optional parameters

	ALLOCATE examples
	Allocate a data set using SMS class specifications: Example 1
	Allocate a VSAM data set using SMS class specifications: Example 2
	Allocate a new data set: Example 3
	Allocate a non-VSAM data set: Example 4
	Allocate a partitioned data set extended: Example 5

	Listing and controlling SMSVSAM recovery
	SHCDS parameters
	Required parameters
	Optional parameters

	SCHDS examples
	Using PERMITNONRLSUPDATE with a generic data set name specification: Example 1
	Listing data sets with the high-level qualifier SYSPLEX: Example 2
	Listing data sets with JOBS: Example 3
	Listing shunted entries: Example 4

	Altering data set attributes
	Entry types that can be altered
	ALTER parameters
	Required parameters
	Optional parameters

	ALTER examples
	Alter a cluster's attributes using SMS keywords: Example 1
	Roll-In a generation data set: Example 2
	Alter the entry names of generically named clusters: Example 3
	Alter the attributes of a generation data group: Example 4
	Alter a data set expiration date: Example 6
	Migrate a DB2® cluster to a linear data set cluster: Example 7
	Alter a cluster name and the associated data and index names: Example 8

	Defining alternate indexes
	DEFINE ALTERNATEINDEX parameters
	Required parameters
	Optional parameters

	Data and index components of an alternate index
	DEFINE ALTERNATEINDEX examples
	Define an alternate index using SMS data class specification: Example 1
	Define an SMS-managed alternate index: Example 2
	Define an alternate index: Example 3
	Define an alternate index with RECATALOG: Example 4

	Defining attributes for clusters and cluster components
	DEFINE CLUSTER parameters
	Required parameters
	Optional parameters

	Data and index components of a cluster
	DEFINE CLUSTER examples
	Define an SMS-managed key-sequenced cluster: Example 1
	Define an SMS-managed key-sequenced cluster specifying data and index parameters: Example 2
	Define a key-sequenced cluster specifying data and index parameters: Example 3
	Define a key-sequenced cluster and an entry-sequenced cluster: Example 4
	Define a relative record cluster in a catalog: Example 5
	Define a reusable entry-sequenced cluster in a catalog: Example 6
	Define a key-sequenced cluster in a catalog: Example 7
	Define an entry-sequenced cluster using a model: Example 8
	Define a VSAM volume data set: Example 9
	Define a relative record data set with expiration date beyond 1999: Example 10
	Define a linear data set cluster in a catalog: Example 11

	Securing log streams

	Chapter 3. Customizing the DFSMStvs environment
	Coding VSAM macros
	Subparameters with GENCB, MODCB, SHOWCB, and TESTCB
	Use of list, execute, and generate forms of VSAM macros
	List-form keyword
	Execute-form keyword
	Generate-form keyword

	Examples of generate, list, and execute forms
	Example: Generate form (reentrant)
	Example: Remote-list form (reentrant)
	Example: Execute form (reentrant)

	ACB—generate an access method control block at assembly time
	Example 1: ACB macro
	Example 2: ACB macro

	EXLST—generate an exit list at assembly time
	EXLST macro syntax
	Example: EXLST macro

	GENCB—generate an access method control block at execution time
	Example 1: GENCB macro (generate an access method control block)
	Example 2: GENCB macro (generate an access method control block)

	GENCB—generate an exit list at execution time
	Example: GENCB macro (generate an exit list)
	GENCB—generate a request parameter list at execution time
	Building a chain of request parameter lists
	Example: GENCB macro (generate a request parameter list)
	Example: GENCB macro (generate a request parameter list)
	GENCB—list form
	GENCB—execute form
	GENCB—generate form

	IDALKADD—RLS record locking
	MODCB—modify an access method control block
	Example: MODCB macro (modify an access method control block)

	MODCB—modify an exit list
	Example: MODCB macro (modify an exit list)

	MODCB—modify a request parameter list
	Example: MODCB macro (modify a request parameter list)
	MODCB—list form
	MODCB—execute form
	MODCB—generate form

	RPL—generate a request parameter list at assembly time
	RPL macro syntax
	Example: RPL macro

	SCHBFR—search buffer
	SHOWCAT—display the catalog
	SHOWCAT—standard form
	SHOWCAT—list form
	SHOWCAT—execute form
	Expressions that can be used for SHOWCAT

	Understanding VSAM macro return and reason codes
	OPEN return and reason codes
	CLOSE return and reason codes
	Control block manipulation macro return and reason codes
	Record management return and reason codes
	Return codes (RPLRTNCD)
	Asynchronous request
	Synchronous request

	Component codes (RPLCMPON)
	Reason codes (RPLERRCD)
	Reason code (successful request)
	Reason code (logical errors)
	Positioning following logical errors

	Reason code (physical errors)

	Reason code (server errors)

	Return codes from macros used to share resources among data sets
	BLDVRP return codes
	DLVRP return codes

	End-of-volume return codes
	SHOWCAT return codes

	Coding VSAM user-written exit routines
	General guidelines for coding exit routines
	Programming guidelines
	Information
	Multiple request parameter lists or data sets
	Return to a main program

	IGW8PNRU routine for batch override
	Register contents
	Programming considerations

	EODAD exit routine to process end of data
	Register contents
	Programming considerations

	EXCEPTIONEXIT exit routine
	Register contents
	Programming considerations

	JRNAD exit routine to journalize transactions
	Register contents
	Programming considerations
	Journalizing transactions
	RBA changes
	Control interval splits
	Parameter list

	LERAD exit routine to analyze logical errors
	Register contents
	Programming considerations

	RLSWAIT exit routine
	Register contents
	Request environment

	SYNAD exit routine to analyze physical errors
	Register contents
	Programming considerations
	Example of a SYNAD user-written exit routine

	UPAD exit routine for user processing
	Register contents
	Programming considerations

	User-security-verification routine

	Chapter 4. Programming applications to use DVSMStvs
	Modifying applications to use DFSMStvs
	Designing and coding applications to use DFSMStvs
	Handling DFSMStvs error codes
	Module identifiers
	Initialization reason codes
	Open and close reason codes
	Command processor reason codes
	Front end (VSAM record management) reason codes
	Message processing reason codes
	Quiesce reason codes
	Shunt processing reason codes
	Restart reason codes
	Peer recovery reason codes
	Syncpoint reason codes
	Miscellaneous reason codes
	Logging reason code prefixes
	Logging services reason codes

	Chapter 5. Operating in the DFSMStvs transaction processing environment
	Setting up the storage management subsystem
	Preparing for the storage management subsystem
	Allocating control data sets
	Calculating the size of storage and active control data sets
	Calculating the size of a COMMDS
	Selecting volumes for control data sets
	Allocating an SCDS
	Allocating an ACDS
	Allocating a COMMDS

	Modifying the SYS1.PARMLIB data set
	Starting the SMS address space

	Accessing the storage administrator Primary Option Menu

	Activating storage management subsystem configurations
	Manually activating a storage management subsystem configuration
	Step 1: IPL each system in the SMS complex
	Step 2: Prepare one system
	Step 3: Activate the configuration from one system
	Activating with the ISMF ACTIVATE command
	Activating with the SETSMS operator command

	Step 4: Activate SMS on the other systems

	Automatically activating a storage management subsystem configuration
	Changing storage management subsystem parameters
	Parameters of the SETSMS operator command
	Considerations for changing storage management subsystem configurations
	OAM considerations for changing SCDSs

	Displaying storage management subsystem information
	Changing storage management subsystem parameters

	Controlling DVSMStvs processing
	Monitoring application programs that use DFSMStvs
	Changing DFSMStvs status
	Maintaining data integrity during backup-while-open processing
	Data integrity—serialization
	Backup-while-open data sets (CICS and DFSMStvs)
	Backup-while-open status definition
	Backup-while-open processing
	Backup-while-open and concurrent copy
	TOLERATE (ENQFAILURE) and SHARE considerations
	Recovery data

	Chapter 6. Diagnosing DFSMStvs problems
	Incorrect output keyword
	Procedure
	VSAM RLS—incorrect output keyword
	Procedure

	DFSMStvs—incorrect output keyword
	Procedure

	Catalog management—incorrect output keyword
	Procedure

	Abend keyword
	Symptoms of the failure
	Procedure
	Procedure for SVC dump
	Procedure for SYSABEND, SYSMDUMP, or SYSUDUMP

	Procedure for building the abend keyword

	Message keyword
	Procedure
	Definitions of message keyword terms

	VSAM, DFSMStvs, and VSAM RLS record management—message keyword
	Procedure

	VSAM diagnostic aids
	Access method services (AMS) diagnostic aids
	Trace tables
	Intermodule trace table
	Intramodule trace table

	Dump points
	TEST option
	TEST keyword
	How to use the TEST option

	Catalog management diagnostic aids
	VSAM OPEN/CLOSE/end-of-volume (O/C/EOV) diagnostic aids
	Generalized trace facility
	VSAM GTF X'F61' record
	Considerations for requesting X'F61' records

	Mapping of the X'F61' record

	Interactive problem control system (IPCS)
	Printing GTF records
	Input
	Output

	VSAM OPEN/CLOSE/End-of-Volume return and reason codes
	VSAM record-level sharing diagnostic aids
	VSAM RLS component trace
	TRACE command for VSAM RLS component trace
	Trace options
	Formatting the VSAM RLS component trace table

	SMSVSAM abends
	Activation of the SMSVSAM address space
	Termination of the SMSVSAM address space
	Console dumps
	SMSVSAM initialization errors
	Sharing-control problems
	VSAM RLS hang conditions
	VSAM RLS deadlock and timeout problems

	VSAM record-level sharing return and reason codes
	Return codes from SMSVSAM
	Return codes from SMPM_CFPurge
	Return codes from SMPM_CFQuery

	VSAM record management (R/M) diagnostic aids
	Control block information
	UPAD exit or WAITX
	RLSWAIT exit
	Error conditions
	Exclusive control error analysis
	ABEND0CX error analysis
	Damaged data sets (Non-RLS access)
	Determining which data set might be damaged

	Damaged indexes
	Recovering from index damage

	Damaged data control intervals
	Recovering from data CI damage

	Physical I/O errors
	VSAM record management trace facility (non-RLS access)
	When to use the record management trace facility
	Starting the record management trace function
	Example of a DD statement requesting trace

	Adding trace points
	Ending the record management trace function
	Printing the record management trace output

	VSAM record management return and reason codes
	Return codes from the record-management (request) macros
	Function codes for logical and physical errors
	Logical-error return codes
	Physical-error return codes

	Control block manipulation return codes

	Appendix A. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Policy for unsupported hardware
	Minimum supported hardware
	Trademarks

	Glossary
	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

